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3.1 Consider the space X := {f : [0, 1] → R, a continuous function}.

(a) Explain (with examples) why ∆(f, g) := max
t∈(0,1)

|f(t)− g(t)| is not a metric on X.

∆(f, g) satisfies all three properties of a metric, but it fails to satisfy something more fun-
damental: it’s not a function from X ×X → R. For example, if f(t) = t and g(t) = 0 for all
t ∈ [0, 1], then

∆(f, g) = max
t∈(0,1)

|t| = max(0, 1).

Since the right hand side doesn’t exist, ∆(f, g) isn’t defined for this choice of f and g.

(b) Prove that d(f, g) := max
t∈[0,1]

|f(t)− g(t)| is a metric on X.

This time, the proposed metric is well-defined (thanks to the Extreme Value Theorem). The
only metric property that’s not straightforward is the triangle inequality. To see that it
holds, suppose f, g, h ∈ X, and pick any a ∈ [0, 1]. Then

|f(a)− h(a)| ≤ |f(a)− g(a)|+ |g(a)− h(a)| ≤ d(f, g) + d(g, h).

Since the right hand side is independent of a, we deduce that

d(f, h) = max
a∈[0,1]

|f(a)− h(a)| ≤ d(f, g) + d(g, h).

(c) Prove that any function in X is completely determined by its behavior on Q. In other words, show
that if f, g ∈ X and f(q) = g(q) for all q ∈ Q, then f = g.

It suffices to prove that if h ∈ X vanishes at all rational inputs, then h vanishes everywhere.
Pick any a ∈ [0, 1]. For any ϵ > 0 there exists some neighborhood of a on which

|h(x)− h(a)| < ϵ.

Now observe that h(x) = 0 somewhere in this neighborhood, since the rationals are dense in
R. It instantly follows that

|h(a)| < ϵ

for any ϵ > 0. We conclude that h(a) = 0, as claimed.

3.2 Given a function f : X → Y , where X and Y are metric spaces. We proved in class that f is continuous
on X if and only if f−1(B) is open in X for every open ball B in Y . Use this to prove the following

Theorem. f is continuous on X if and only if f−1(O) is open in X for every open set O in Y .



(In words: a function is continuous iff the preimage of any open set is open.)

(⇐) If the preimage of any open set is open, then in particular, the preimage of any open
ball is open. It follows from our work in class that f must be continuous.

(⇒) Suppose f is continuous, and pick any open set O in Y . For every point y ∈ O, there
exists an open ball Ay such that y ∈ Ay ⊆ O. We have

f−1(O) = f−1
( ⋃
y∈O

Ay

)
=
⋃
y∈O

f−1(Ay).

This is a union of preimages of open balls, which (from class) we know are all open. We
deduce that f−1(O) is open, as claimed.

3.3 In class we saw that any collection of disjoint open intervals must be countable. Does this also hold for
closed intervals?

No! For example, R =
⊔
x∈R

[x, x].

3.4 In class we described the Cantor set and some of its properties. Here we explore this topic more carefully.

First, we recall the construction of the Cantor set. (This was done in class using less formal language).
We begin with the open interval O1 := (1/3, 2/3). Next, for each n ≥ 1 define

On+1 :=

(
1

3
· On

)
∪
(
2

3
+

1

3
· On

)
,

where α ·X := {αx : x ∈ X} and β + Y := {β + y : y ∈ Y }. Finally, set

C := [0, 1] \

( ∞⋃
n=1

On

)
.

It immediately follows that C is closed and bounded, hence that C is compact.

(a) Prove that C has empty interior, i.e. that no points of C are interior points.

Let
Cm := [0, 1] \

( ⋃
n≤m

On

)
;

by definition of the Cantor set, Cm ⊇ C for every N . Note that (by induction) Cm is the
disjoint union of 2m closed intervals, each of length 1/3m.

Pick any point x ∈ int(C); by definition, there exists ϵ > 0 such that Bϵ(x) ⊆ C, whence

Bϵ(x) ⊆ Cm

for every m. But for sufficiently large m we have 1
3m < ϵ, so Cm cannot contain any interval

of length ϵ! We conclude that the interior of C must be empty.

(b) Prove that C has no isolated points.

We continue using the notation Cm defined in the previous solution. Recall that Cm is the
disjoint union of 2m closed intervals, each of length 1/3m; moreover, observe that the endpoint
of any one of these closed intervals must live in C. This implies that any point of Cm is within
a distance of 1/3m of some point of C. In particular, for any p ∈ C and any m, we have that p
is within a distance of 1

3m of some other point of C. Since 1
3m can be made arbitrarily small,

p cannot be isolated.
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(c) The set

∞⋃
n=1

On is the union of disjoint open intervals. Prove that the sum of all the lengths of all

these intervals is 1. (In other words, C has zero length!)

Again we use the notation Cm. Since Cm is the disjoint union of 2m closed intervals, each
of length 1/3m, the total length of Cm is (2/3)m. Since C is contained in every Cm, its total
length must be smaller than (2/3)m for every m, which shows that it must have length 0.

[Alternative solution.] The total length of intervals composing On is 1
3 (

2
3 )

n−1
. Since

all the On’s are disjoint, the total length is
∞∑

n=1

1
3 (

2
3 )

n−1
=

1/3
1−2/3 = 1.

(d) Prove that x ∈ C iff x has a ternary (i.e. base 3) expansion that doesn’t use the digit 1 anywhere.

First description. The first set we remove, O1, consists of all numbers with ternary
expansion of the form 0.1 · · · . The next set, O2, consists of remaining numbers whose
second ternary digit is a 1. Similarly, On consists of all numbers between 0 and 1 such that
the first n−1 ternary digits are exclusively 0 and 2, and the nth ternary digit is 1. It follows
that any x /∈

⋃
n≥1

On has a ternary expansion that uses only 0s and 2s.

Second description. Above we defined Cm to be the mth stage of forming the Cantor set,
where we have created 2m disjoint closed intervals each of length 1/3m. Here we develop a
convenient nomenclature for the individual closed intervals composing Cm. We will write

Cm =
⊔

ℓ=m-digit binary number

Iℓ.

Thus

C1 = I0 ⊔ I1

C2 = I00 ⊔ I01 ⊔ I10 ⊔ I11

...

For any closed interval I, let α(I) denote the left endpoint of I and β(I) denote the right
endpoint, i.e. I = [α(I), β(I)]. We will now define Iℓ recursively, as follows.

First, set I0 := [0, 1/3] and I1 := [2/3, 1]. Next, given an (m − 1)-digit binary number ℓ, we
will define Iℓ0 and Iℓ1 in terms of the endpoints of the interval Iℓ:

Iℓ0 := [α(Iℓ), α(Iℓ) + 1/3m]

Iℓ1 := [β(Iℓ)− 1/3m, β(Iℓ)]

A straightforward induction proves our assertion that Cm is the disjoint union of the closed
intervals Iℓ over all m-digit binary numbers ℓ.

Finally, observe that any x ∈ Cm must live in an interval of the form Id1d2···dm
with each

di = 0 or 1. A final proof by induction shows that

x ∈ Id1d2···dm
⇐⇒ x = 0.e1e2 · · · em . . . in ternary,

where ei := 2di; in particular, the first m ternary digits of x must be 0 or 2. Since x ∈ C
requires that x ∈ Cm for every m, we deduce the claim.
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(e) Given sets A and B of real numbers, define their sum and difference to be

A+ B := {a+ b : a ∈ A, b ∈ B} A − B := {a− b : a ∈ A, b ∈ B}.

Prove that C + C = [0, 2] and C − C = [−1, 1].

Perhaps the easiest approach is to start by proving

1

2
C +

1

2
C = [0, 1]. (1)

The ⊆ containment is obvious. To prove the other direction, pick any x ∈ [0, 1] and write
its ternary expansion as

x = 0.a1a2a3 · · ·

We can easily write x as a sum of two ternary numbers 0.b1b2b3 · · · and 0.c1c2c3 · · · , all of
whose digits are 0 or 1: if ak = 0, set bk = ck = 0; if ak = 1, set bk = 0 and ck = 1; if ak = 2,
set bk = ck = 1.

From (1), it’s immediate that C + C = [0, 2]. To deduce the second claim, observe that
−C = C − 1, whence

C − C = C + C − 1 = [−1, 1].

3.5 This problem builds on the previous one and introduces the notorious Cantor-Lebesgue function.
This is a function F : [0, 1] → [0, 1] with the seemingly paradoxical properties that

� F is continuous everywhere on [0, 1].

� F (0) = 0 and F (1) = 1.

� The measure (i.e. total length) of the set {x ∈ [0, 1] : F ′(x) = 0} equals 1!

(a) Consider f : C → [0, 1] defined by

f(x) :=

∞∑
k=1

ak/2

2k
,

where x = 0.a1a2a3 . . . is a ternary expansion of x that doesn’t use the digit 1. Prove that f is
well-defined and continuous on C, and that f(0) = 0 and f(1) = 1.

To prove continuity means to prove that nearby inputs produce nearby outputs. If two inputs
are nearby, that means their ternary expansions agree for the first bunch of digits. But this
means the corresponding outputs have binary expansions that agree for the first bunch of
digits, hence are close to each other.

(b) Prove that f is surjective. [Note that, bizarrely, f maps a measure 0 set onto a set of measure 1.]

Pick any element α ∈ [0, 1] and write it in binary. Now double each digit and interpret the
number in ternary! The image of this number under f is α.
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(c) Prove that if a, b ∈ C and (a, b) ⊂ [0, 1] \ C, then f(a) = f(b).

The way the problem is set up, a is the right endpoint of an interval removed from Ck, while
b is the left endpoint of the next interval over in Ck. A bit of thought shows that the ternary
expansions of a and b are the same, except that the 3−k-th digit of a is a 1 while the 3−k-th
digit of b is a 2. In other words, we can write

a = 0.d1d2 · · · dk−102 and b = 0.d1d2 · · · dk−12.

Applying f to both these yields binary numbers

f(a) = 0.e1e2 · · · ek−101 = 0.e1e2 · · · ek−11 = f(b).

(d) Deduce the existence of the Cantor-Lebesgue function.

First, we extend f above to a function F : [0, 1] → [0, 1] by setting

F (x) =

{
f(x) if x ∈ C
f(a) if x ∈ (a, b) \ C with a, b ∈ C.

We’ve already verified that F is continuous everywhere in C, and it’s constant everywhere
else so it is clearly continuous outside of C as well. It’s clear that f(0) = 0 and f(1) = 1,
which implies the same is true of F . Finally, F is constant everywhere on [0, 1] \ C, and we
proved above that this set has measure 1, so F is differentiable on a set of measure 1!
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