
GALOIS THEORY: LECTURE 4

FEBRUARY 12, 2023

1. A BRIEF REVIEW OF Sn

Much of this course relies on familiarity with the symmetric group on n elements, denoted Sn (the group of all
permutations of n elements). Here we collect some nice facts about Sn that will be particularly useful to us.

(1) Any element of the symmetric group Sn can be written in cycle notation. For example, in S5, the per-
mutation (1 3 2 5) represents mapping 1 7→ 3, 3 7→ 2, 2 7→ 5, 5 7→ 1, and 4 7→ 4. Products of cycles are
evaluated right to left, so for example, (1 3 2 5)(4 5)(1 4 3) = (2 5 4). Eli pointed out that it’s right to
left because it’s function composition, with the right-most permutation serving as the inside function,
the one that’s evaluated first.

(2) Any σ ∈ Sn can be expressed as a product of disjoint cycles (disjoint here means that the cycles do
not permute the same elements). For example, the permutation (1 2)(2 3)(4 5) can be written as the
following product of disjoint cycles: (1 2 3)(4 5).

(3) Any σ ∈ Sn can be expressed as a product of transpositions (transpositions are 2-cycles).1 For example,
Zoe produced a factorization of the permutation (1 2 3 4):

(1 2 3 4) = (1 4)(1 3)(1 2).

This product is not unique, however—Jake and Felix proposed two other factorizations into transposi-
tions:

(1 2 3 4) = (1 2)(2 3)(3 4) = (2 3)(3 4)(1 4).

All of our factorizations thus far used three transpositions. It’s tempting to conjecture that this is always
the case, but Alex pointed out that this cannot be the case, since we can trivially modify any factorization
to contain more transpositions, e.g.

(1 2 3 4) = (1 4)(1 3)(1 2)(1 2)(1 2)

However, Jamie pointed out that the parity of the number of transpositions in the product remains the
same, no matter which product of transpositions you choose to write σ as. This leads to the following
definition:

Definition. σ ∈ Sn is an even permutation iff σ can be expresssed as a product of an even number of
transpositions; if not, we say σ is odd.

Here’s a nice way to visualize the parity of a permutation (that Leo learned from John Conway). Sup-
pose we wish to figure out the parity of (1 3 5 4 2). We represent this permutation pictorially:
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There are four intersections of the arrows (circled in the picture). Conway’s claim is that, since there is
an even number of intersections, the permutation must be even! We can verify this using the definition:

(1 3 5 4 2) = (1 2)(1 4)(1 5)(1 3)

is a decomposition into an even number of transpositions.

(4) You might run across a different (but equivalent) way to express the parity of a permutation:

Definition. The sign (or signature) of σ ∈ Sn, denoted by sgn(σ), is the function sgn : Sn → {−1, 1}
given by

sgn(σ) =
{

1 if σ is even
−1 if σ is odd

There are a few advantages to recasting the parity of a permutation in this language. For one thing,
sgn is a group homomorphism (in fact, it’s the unique nontrivial homomorphism Sn → {±1}; see this
week’s problem set). It is therefore an example of a group character, a concept that comes up in alge-
bra, representation theory, number theory, and even chemistry. Thus, using the language of signature
rather than parity allows us to apply the theory to other areas. Here’s a nice example from number
theory. Given a prime p and a ∈ Zp, let ma : Zp → Zp denote multiplication by a; we can view ma as a
permutation living in Sp. In 1874, Zolotarev proved that sgn(ma) =

(
a
p

)
, the Legendre symbol (mod p).

This leads to a beautiful proof of Quadratic Reciprocity; see Matt Baker’s blog post on this, as well as
a lovely generalization by Williams Duke and Kimberly Hopkins in the American Math Monthly.

(5) The set of all even permutations is a subgroup of Sn of index 2; hence, it is the largest proper subgroup
of Sn. It has a fancy name:

Definition. The set of all even permutations in Sn is called An, the alternating group.

Observe that An ⊴ Sn, since it is the kernel of the sgn map. (Here and throughout, ⊴ means “is a
normal subgroup of”.)

(6) The following result shows that symmetric groups are, in a sense, the most general type of group.
Though this is not always the most useful way to think about a given group, it demonstrates that we can
‘reduce’ any question about abstract groups to a question about permutations.

Theorem 1 (Cayley’s Theorem). For any finite group G, there exists some n ∈ N such that G can be
embedded in Sn.

By “embedded” we mean that there exists an injective homomorphism G ↪→ Sn. Equivalently, this
means G is isomorphic to a subgroup of Sn. A natural question is: given G, what’s the smallest
symmetric group one can embed it in? Although some upper bounds are known, this seems to be open!

2. GALOIS THEORY IN 30 MINUTES

The following result will be a consequence of our work over the course of the semester:

Theorem 2 (Consequence of Galois theory). Given any polynomial f(x), pick one of its roots rf , and express
it using only the coefficients of f , the four field operations, and radicals. There exists an algorithm which, given
f , predicts the level of nesting of radicals in the expression.



The goal of the rest of the lecture is to provide a sketch of this algorithm and run it on a couple examples. Many
details and crucial insights will be missing, of course, but the point is to get a feel for how Galois theory works
and what we are building towards. In brief, the algorithm is as follows:

(1) To each polynomial f(x) ∈ Q[x] we associate a certain group, called the “Galois group” of f and
denoted by Gal(f). It turns out that Gal(f) ≤ Sn where n is the degree of f . (Here and throughout, ≤
means “is a subgroup of”).

Remark. In general, finding the Galois group of a polynomial of f is hard and requires the use of a
bunch of ad hoc tricks.

(2) Set G0 := Gal(f), and recursively define

Gn := [Gn−1, Gn−1]

for all integers n > 0.
(3) Let ℓ(f) := min{n ∈ N : Gn is trivial}.

What this algorithm tells us is: f has a root that can be expressed in terms of the coefficients of f , +, −, ×, ÷,
and ℓ(f) nesting of radicals. For example, if Gal(f) is trivial, then ℓ(f) = 0, which means that f has a root that
can be expressed without using radicals at all. If Gal(f) is not trivial but G1 is, then ℓ(f) = 1, which means
that f has a root which can be expressed with just one radical. We will now fill in some of the missing details
of this algorithm by actually running it on a couple of examples.

Example 1. Let f(x) = x4 − 5x2 + 6. To begin with, it is important to note that this is sort of a silly example,
because we can actually find the roots of f quite simply by factoring. If we let α1, α2, α3, α4 denote the roots
of f , we see that:

f(x) = x4 − 5x2 + 6 = (x2 − 2)(x2 − 3) = 0 =⇒ α1 =
√
2, α2 = −

√
2, α3 =

√
3, α4 = −

√
3

The fact that we know the roots of f in advance makes running the algorithm simpler and easier to understand.
In the next example, however, we will see an example of how to run the algorithm on a polynomial whose roots
we do not know in advance.

Step 1 of the Galois Algorithm

The first step of the algorithm is to “produce the Galois group of f .” Here’s a heuristic explanation of how
to do this. First, we need the notion of a “rational relation”:

Definition. A rational relation among the roots of f is an equation involving only α1, α2, α3, α4, rational
numbers, and the field operations: +, −, ×, ÷.

So the first step to finding the Galois group of f is to write down all (non-redundant!) rational relations amongst
its roots. For example, the following four equations are all rational relations of the roots of f :

(α1)
2 = 2 α1α2 = −2 (α3)

2 = 3 α1α2α3α4 = 6

There are other rational relations in addition to these, but they are redundant—they can be derived from the
above four rational relations. For example, all of the following rational relations are true but redundant:

(α1)
4 = 4 (α2)

2 = 2
1

2
(α3)

2 =
3

2
α1 + α2 = 0

We will not prove that the above four rational relations suffice (but see the extra credit on the problem set!).
But it should seem at least vaguely intuitive that four equations could be enough to uniquely determine four
unknowns, and hence any other rational relations we generate would be redundant.

Taking on faith that the four rational relations are a complete set, we can now construct the Galois group
of f :

Gal(f) is the set of permutations from S4 that leave all of our rational relations true.



For example, the permutation (1 2) ∈ S4 is an element of Gal(f) since if we replace α1 with α2 and α2 with α1

in all of the above rational relations, they remain true:

(α1)
2 = 2 becomes (α2)

2 = 2 which is still true

α1α2 = −2 becomes α2α1 = −2 which is still true

(α3)
2 = 3 stays the same, so it is trivially still true

α1α2α3α4 = 6 becomes α2α1α3α4 = 6 which is still true
As a non-example, the permutation (1 3) is not an elemenet of Gal(f) since it transforms the first rational
relation, (α1)

2 = 4, into (α3)
2 = 4, which is false. Going through and checking which of the 4! = 24

permutations of S4 are in Gal(f), we find

Gal(f) = {(), (1 2), (3 4), (1 2)(3 4)}.
On to Step 2!

Step 2 of the Galois Algorithm

Step 2 of the algorithm says to start computing commutator groups. First, we are supposed to let G0 := Gal(f)
and G1 := [G0, G0]. Some thought shows that {(), (1 2), (3 4), (1 2)(3 4)} is isomorphic to the Klein four-
group, Z2 × Z2. In particular, G0 is abelian, which immediately implies that G1 is trivial.

Step 3 of the Galois Algorithm

Per the algorithm’s instructions, we now set ℓ(f) := min{n ∈ N : Gn is trivial}. From the previous step,
we see that ℓ(f) = 1, which implies that f has a root that can be expressed using non-nested radicals. Recall
that in this example, we knew all the roots in advance, and sure enough: they all consist of a single, non-nested
radical. Galois theory works!

Example 2. Let g(x) = x3 − 6x + 2. In this example, we tackle the question: how do we generate rational
relations when we do not know the roots of g in advance? As before, we denote the roots of g by α1, α2, α3.

Step 1 of the Galois Algorithm

Since α1, α2, α3 are the roots of g, we know that

g(x) = x3 − 6x+ 2 = (x− α1)(x− α2)(x− α3)

= x3 − (α1 + α2 + α3)x
2 + (α1α2 + α1α3 + α1α2)x− α1α2α3

Notice, this equality generates a few rational relations automatically, even though we do not know the specific
values of α1, α2, or α3 in advance:

α1 + α2 + α3 = 0

α1α2 + α1α3 + α2α3 = −6

α1α2α3 = −2

These are the only “obvious” rational relations; without knowing any further information about α1, α2, α3, we
would be hard pressed to conjure another, non-redundant rational relation. But, as in the first example, we will
proceed under the (unproved) assumption that it actually is impossible to generate any other, non-redundant
rational relations.

Since all of these equations are symmetric (i.e. the equations remain identical even after permuting the roles of
α1, α2, α3), it turns out that every permutation in S3 is an element of Gal(g). Thus, Gal(g) = S3.



Step 2 of the Galois Algorithm

We set G0 := Gal(g) = S3, whence G1 := [S3, S3]. From last week’s problem set we know that G1 ≃ Z3. In
particular, G1 is abelian, whence G2 := [G1, G1] is trivial.

Step 3 of the Galois Algorithm

Set ℓ(g) = min{n ∈ N : Gn is trivial}. From the previous step, we see that ℓ(g) = 2. This means that g
has a root that can be expressed using a 2-nesting of radicals. Indeed, recall from the previous lecture that one
of the roots of g is 3

√
−1 +

√
−7 + 3

√
−1−

√
−7. Galois theory works again!

3. REVISITING THE INSOLVABILITY OF THE QUINTIC

Now that we have a better understanding of how the Galois theory algorithm works, we can start to glean how
it would demonstrate the insolvability of the quintic. Given a generic quintic polynomial, say h(x), we would
expect our rational relations to all be symmetric, as in the second example. If this were the case, it would
imply that Gal(h) = S5. It can be easily verified (with a short computer program) that [S5, S5] = A5 and that
[A5, A5] = A5; the latter implies that Gn = A5 for all n ≥ 1. In particular, would expect ℓ(h) to “equal”
infinity, meaning that there is no way to write down a root of h in terms of its coefficients, the field operations,
and a finite nesting of radicals. Later on in the course, we will actually demonstrate this for a specific quintic
polynomial: we’ll show that Gal(x5 − x− 1) = S5.

Remark. In our second example and in our discussion of the insolvability of the quintic, we saw polynomials
whose Galois group was in fact the entire symmetric group. It turns out that in general, 100% of degree n
polynomials have their Galois group equal to Sn. However, 100% does not mean “all”! 100%, here, is a
measure of density. That is to say, if we consider the set of all degree n polynomials, we can imagine listing
out increasingly larger subsets of it. For each subset, we can calculate the percentage of polynomials whose
Galois group equals Sn. If we calculate what these percentages tends towards in the limit, we see that they
approach 100%. However, we’ll see that there are infinitely many polynomials whose Galois group is not the
full symmetric group.
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