GALOIS THEORY: LECTURE 5

FEBRUARY 15, 2023

1. Key Points from Algebra

Definition. We define a field to be any set K endowed with two binary operations + and \times such that K is an abelian group under addition with additive identity 0 , and $K \backslash\{0\}$ is an abelian group under multiplication with multiplicative identity 1. Additionally, we must have that multiplication distributes over addition, ie $a(b+c)=a b+a c$ for all $a, b, c \in K$ and finally that $1 \neq 0$.

Examples of fields include the rationals \mathbb{Q}, the reals \mathbb{R}, the complex numbers \mathbb{C}, and the three-elements field \mathbb{F}_{3}, which one will also see denoted \mathbb{Z}_{3} or $\mathbb{Z} / 3 \mathbb{Z}$.

Here are some sets we often encounter that are not fields: $\mathbb{Z}, \mathbb{Q}[t], \mathbb{Z}_{6}$, and \mathbb{R}^{2}. (Actually, as Jonathan pointed out, the last of these can be made into a field by defining addition as usual and defining multiplication via $(a, b) \cdot(c, d):=(a c-b d, a d+b c)$. In other words, we're secretly treating \mathbb{R}^{2} as though it were \mathbb{C}.)
Definition. A set R is a ring if it has all the field properties except $R \backslash\{0\}$ doesn't necessarily have to have multiplicative inverses. Note that we require $1 \in R$ in this class, but we don't require that multiplication in R be commutative.

Any field is a ring. Other examples include $\mathbb{Z}, \mathbb{Q}[t]$, and \mathbb{Z}_{6}. Note that $3 \mathbb{Z}$ is not a ring for our purposes, because it doesn't have a multiplicative identity.
Definition. Given a ring R, a subset $S \subseteq R$ is called a subring if S is a ring under inherited + and \times from R and has the same additive and multiplicative identities as R.

For example, \mathbb{Z} is a subring of \mathbb{Q}. The subset $\{0,3\} \subseteq \mathbb{Z}_{6}$ is not a subring because 1 is the multiplicative identity in \mathbb{Z}_{6}, whereas 3 is the multiplicative identity in the subset.

Similarly, $3 \mathbb{Z} \subseteq \mathbb{Z}$ is not a subring since it doesn't inherit the multiplicative identity. It's still a nice subset though, because $\mathbb{Z} / 3 \mathbb{Z} \cong \mathbb{F}_{3}$. We call $3 \mathbb{Z}$ an ideal subset of \mathbb{Z}.

Definition. Given a ring R, we say $I \subseteq R$ is an ideal subset (or simply, an 'ideal') iff $I \unlhd R$ under addition and R / I is a ring. Recall that $R / I:=\{[x]: x \in R\}$ where $[x]=x+I$.

For example, $Z_{6}=\mathbb{Z} / 6 \mathbb{Z}=\{[0],[1],[2],[3],[4],[5]\}$ where $[2]=\{\ldots,-10,-4,2,8,14, \ldots\}$ and each other element is defined similarly.
We want to define + and \times on R / I as $[a]+[b]=[a+b]$ and $[a] \cdot[b]=[a b]$.
This may not always be well-defined, though. Here's a cautionary example. Consider $\mathbb{Q} \subseteq \mathbb{Q}[t]$. Note that $\mathbb{Q} \unlhd \mathbb{Q}[t]$ as groups under addition.
Then $\mathbb{Q}[t] / \mathbb{Q}=\{[f]: f \in \mathbb{Q}[t]\}$, where $[f]=f+\mathbb{Q}$.
We define $[f]+[g]=[f+g]$ and $[f][g]=[f \cdot g]$.
Then we have $\left[t^{2}\right] \ni t^{2}+2$, whence $\left[t^{2}\right]=\left[t^{2}+2\right]$. It follows that $[t]\left[t^{2}\right]=[t]\left[t^{2}+2\right]$. But this means $\left[t^{3}\right]=\left[t^{3}+2 t\right]$, which is a contradiction, since these differ by $2 t$, and $2 t \notin \mathbb{Q}$! Thus, \mathbb{Q} is not an ideal of $\mathbb{Q}[t]$. Analyzing this more carefully leads to the following characterization of ideals:

Proposition 1. $I \subseteq R$ is an ideal iff
(1) $I \unlhd R$ under +
(2) $R I \subseteq I$ and $I R \subseteq I$. ('I swallows multiplication.')

Here are some examples of ideals of $\mathbb{Q}[t]$:
(1) Polynomials with $a_{0}=0$
(2) $\langle t+1\rangle:=(t+1) \mathbb{Q}[t]$, the set of all multiples of $(t+1)$. This ideal is said to be generated by $t+1$, meaning it's the minimal ideal containing $t+1$.
(3) Pick $\alpha \in R$. The set of all polynomials with α as a root forms an ideal of R.

Definition. Given a field K, we say $f \in K[t]$ is irreducible iff $f=g h$ with $g, h \in K[t]$ implies g or h is a unit. This is saying that f cannot be broken down in a meaningful way into smaller polynomials.
Definition. We say $\alpha \in R$ is a unit iff there exists $\alpha^{-1} \in R$ such that $\alpha \alpha^{-1}=1$. We denote the set of all units of R by R^{\times}. Note that in a field, all nonzero elements are units, so if K is a field, then $K^{\times}=K \backslash\{0\}$.

For more on rings, check out the document posted on the course website!

