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1. KEY POINTS FROM ALGEBRA

Definition. We define a field to be any set K endowed with two binary operations + and × such that K is
an abelian group under addition with additive identity 0, and K \ {0} is an abelian group under multiplication
with multiplicative identity 1. Additionally, we must have that multiplication distributes over addition, ie
a(b+ c) = ab+ ac for all a, b, c ∈ K and finally that 1 ̸= 0.

Examples of fields include the rationals Q, the reals R, the complex numbers C, and the three-elements field
F3, which one will also see denoted Z3 or Z/3Z.

Here are some sets we often encounter that are not fields: Z, Q[t], Z6, and R2. (Actually, as Jonathan pointed
out, the last of these can be made into a field by defining addition as usual and defining multiplication via
(a, b) · (c, d) := (ac− bd, ad+ bc). In other words, we’re secretly treating R2 as though it were C.)

Definition. A set R is a ring if it has all the field properties except R \ {0} doesn’t necessarily have to have
multiplicative inverses. Note that we require 1 ∈ R in this class, but we don’t require that multiplication in R
be commutative.

Any field is a ring. Other examples include Z, Q[t], and Z6. Note that 3Z is not a ring for our purposes,
because it doesn’t have a multiplicative identity.

Definition. Given a ring R, a subset S ⊆ R is called a subring if S is a ring under inherited + and × from R
and has the same additive and multiplicative identities as R.

For example, Z is a subring of Q. The subset {0, 3} ⊆ Z6 is not a subring because 1 is the multiplicative
identity in Z6, whereas 3 is the multiplicative identity in the subset.

Similarly, 3Z ⊆ Z is not a subring since it doesn’t inherit the multiplicative identity. It’s still a nice subset
though, because Z/3Z ∼= F3. We call 3Z an ideal subset of Z.

Definition. Given a ring R, we say I ⊆ R is an ideal subset (or simply, an ‘ideal’) iff I ⊴ R under addition
and R/I is a ring. Recall that R/I := {[x] : x ∈ R} where [x] = x+ I .

For example, Z6 = Z/6Z = {[0], [1], [2], [3], [4], [5]} where [2] = {. . . ,−10,−4, 2, 8, 14, . . .} and each other
element is defined similarly.

We want to define + and × on R/I as [a] + [b] = [a+ b] and [a] · [b] = [ab].
This may not always be well-defined, though. Here’s a cautionary example. Consider Q ⊆ Q[t]. Note that

Q⊴Q[t] as groups under addition.
Then Q[t]/Q = {[f ] : f ∈ Q[t]}, where [f ] = f +Q.
We define [f ] + [g] = [f + g] and [f ][g] = [f · g].
Then we have [t2] ∋ t2 + 2, whence [t2] = [t2 + 2]. It follows that [t][t2] = [t][t2 + 2]. But this means

[t3] = [t3 + 2t], which is a contradiction, since these differ by 2t, and 2t /∈ Q! Thus, Q is not an ideal of Q[t].
Analyzing this more carefully leads to the following characterization of ideals:

Proposition 1. I ⊆ R is an ideal iff
(1) I ⊴R under +
(2) RI ⊆ I and IR ⊆ I . (‘I swallows multiplication.’)

Here are some examples of ideals of Q[t]:
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(1) Polynomials with a0 = 0
(2) ⟨t+ 1⟩ := (t + 1)Q[t], the set of all multiples of (t + 1). This ideal is said to be generated by t + 1,

meaning it’s the minimal ideal containing t+ 1.
(3) Pick α ∈ R. The set of all polynomials with α as a root forms an ideal of R.

Definition. Given a field K, we say f ∈ K[t] is irreducible iff f = gh with g, h ∈ K[t] implies g or h is a
unit. This is saying that f cannot be broken down in a meaningful way into smaller polynomials.

Definition. We say α ∈ R is a unit iff there exists α−1 ∈ R such that αα−1 = 1. We denote the set of all units
of R by R×. Note that in a field, all nonzero elements are units, so if K is a field, then K× = K \ {0}.

For more on rings, check out the document posted on the course website!
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