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We start by reviewing a few concepts from last class. Given a field K, we can form K[t], the set of all
polynomials with coefficients in K; this set forms a ring. Some polynomials are irreducible, meaning that the
only way to express them as a product of two polynomials in K[t] is if one of those polynomials is a unit. And
what are these units? Carlos pointed out that

K[t]× = K× = K \ {0}.
In other words, any factorization of a polynomial that’s irreducible over K[t] must look like a polynomial times
a constant.

1. ANALOGIES BETWEEN Z AND K[t]

Irreducible polynomials are highly reminiscent of prime numbers, but of course there are some differences.
For example, in Z there are only two units (namely, ±1), whereas in K[t] there might be infinitely many! To
get a better sense of how deep such analogies go, we wrote down a little table:

Z K[t]

Units Z× = {±1} K[t]× = K \ {0}
Prime/Irreducible p ∈ Z is prime iff p = ab implies a or b

is a unit.
f ∈ K[t] is irreducible iff f = gh im-
plies g or h is a unit.

Factoring Any n ∈ Z can be written as a unit times
a product of primes.

Any f ∈ K[t] can be written as a unit
times a product of irreducibles.

Quotient-Remainder For all a, b ∈ Z, b ̸= 0, ∃!q, r ∈ Z such
that a = qb+ r and 0 ≤ r < |b|

∀f, g ∈ K[t], g ̸= 0, ∃!q, r ∈ K[t] such
that f = qg + r and deg(r) < deg(g).

Structure of ideals ⟨a, b⟩ := aZ+ bZ =
(
gcd(a, b)

)
⟨f, g⟩ := fK[t] + gK[t] =

(
gcd(f, g)

)
Prime Divisibility Property p prime and p|ab =⇒ p|a or p|b. f irreducible and f |gh =⇒ f |g or f |h.

Studying this table, we can compile a dictionary between the worlds of integers and polynomials:
prime←→ irreducible

magnitude←→ degree
positive←→ monic

Using this dictionary, we can make conjectures about the structure of K[t] based on known results about primes,
and vice-versa.

2. INTRODUCTION TO FIELD EXTENSIONS

Motivating Question. Is x2 + 1 irreducible over F3, the field with three elements?
If x2 + 1 were reducible over F3, we would be able to factor it, i.e. we’d have x2 + 1 = (ax+ b)(cx+ d) in

F3. But this would imply that x2 + 1 has a root in F3, which it doesn’t! Thus, x2 + 1 is irreducible over F3.
This is reminiscent of the situation over R: x2 + 1 has no real roots and is thus irreducible over R. On the

other hand, by zooming out from R to C, we can find roots of this polynomial. Can we do the same thing in
the context of F3?
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One obvious approach is to take the number i, which we know squares to−1, and simply add it to the field F3.
What does this actually mean? More generally, how does one adjoin a number α to a field K? Tate suggested
that this field—denoted K(α)—is defined to be the smallest field containing both K and α. To make this more
precise, Jonathan suggested K(α) should be the intersection of all fields F containing both K and α, i.e.

K(α) :=
⋂
F⊇K

F∋α

F.

At first glance, this seems like a very reasonable definition. Closer inspection, however, reveals that this is a
problematic definition. What are “all” the fields F we’re looking at? It turns out that the Löwenheim-Skolem
theorem implies that the collection of all fields is too big to be a set—it’s what’s called a proper class. In other
words, it’s not possible to intersect all sets containing K, because there are simply too many to consider.

Jonathan responded by pointing out that α has to live somewhere to start with. Let’s say α ∈ L, a field. Then
we can adjust the above definition to fix our earlier problem: given a field K, a field L, and α ∈ L, we define
K adjoin α to be

K(α) :=
⋂
F∋α

K⊆F⊆L

F.

Now that we have a proper definition, we can return to our initial idea: adjoining i to F3. But there’s a problem:
by definition, i ∈ C, so F3(i) is a field living between F3 and C. But Felix pointed out F3 isn’t a subfield of C,
since 2 + 2 = 1 in F3 but 2 + 2 ̸= 1 in C! Thus it doesn’t make sense to adjoin i to F3.

But maybe this is a linguistic issue? In other words, sure, we can’t literally adjoin i to F3 the way they’re
written, but perhaps there’s a subfield of C that’s isomorphic to F3 so that we can adjoin i to this subfield? No:

Proposition 1. F3 does not embed into C.

Proof. Suppose ϕ : F3 → C is a homomorphism; we claim ϕ cannot be injective. To see this, first observe that

ϕ([0]) = ϕ([0] + [0]) = ϕ([0]) + ϕ([0]),

whence ϕ([0]) = 0. Thus, we have

0 = ϕ([0]) = ϕ([1] + [1] + [1]) = ϕ([1]) + ϕ([1]) + ϕ([1]) = 3ϕ([1]).

It follows that ϕ([1]) = 0 = ϕ(1), so ϕ is not injective. □

We conclude that there’s no way to adjoin the number i ∈ C to the field F3, since the proposition above
shows that we can’t describe F3 using the language of complex numbers (and in particular, there’s no good
way to describe the interaction between i and F3). Notice that the heart of the proof above is the idea that
[1] + [1] + [1] = [0] in F3 but 1 + 1 + 1 ̸= 0 in C. This idea motivates a useful definition:

Definition. The characteristic of a field K (denoted by char K) is the least positive n ∈ N such that

1 + 1 + · · ·+ 1︸ ︷︷ ︸
n times

= 0.

If no such n exists, then we say that char K = 0.

Proposition 2. If char K ̸= char K ′, then K does not embed into K ′.

Proof. On the problem set. □

Remark. Note that Proposition 2 immediately implies that if K ≃ K ′, then char K = char K ′. The converse
of this statement does not hold, however.

It turns out that the characteristic of a field is always either 0 or a prime (see this week’s problem set).
In practice, proofs of theorems about field theory often split into two cases: characteristic 0 and positive
characteristic, employing two different approaches. This led us to a story about Hironaka and his resolution of
singularities theorem.



When we discussed generating a field from a given set of elements, we required two additional pieces of
information: a small field and a large ambient field. But as we’ve seen, we don’t need to require that the
small field literally live inside the large one; an isomorphic copy will do. We formalize this in the following
definition:

Definition. Given two fields K and L we say that L is a field extension of K if and only if K embeds into L,
i.e. that there exists an injective homomorphism K ↪→ L.

This is all great, but doesn’t resolve our initial motivating question about solving x2 + 1 = 0 over F3. It turns
out this is possible, as was first discovered by Kronecker in the 1880s:

Theorem 1. Given f ∈ K[t], there exists a field extension L of K such that f has a root in L.

We’ll prove this theorem, and apply it to resolve our motivating question, next class.
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