GALOIS THEORY: LECTURE 6

FEBRUARY 19, 2024

We start by reviewing a few concepts from last class. Given a field K, we can form $K[t]$, the set of all polynomials with coefficients in K; this set forms a ring. Some polynomials are irreducible, meaning that the only way to express them as a product of two polynomials in $K[t]$ is if one of those polynomials is a unit. And what are these units? Carlos pointed out that

$$
K[t]^{\times}=K^{\times}=K \backslash\{0\} .
$$

In other words, any factorization of a polynomial that's irreducible over $K[t]$ must look like a polynomial times a constant.

1. Analogies between \mathbb{Z} and $K[t]$

Irreducible polynomials are highly reminiscent of prime numbers, but of course there are some differences. For example, in \mathbb{Z} there are only two units (namely, ± 1), whereas in $K[t]$ there might be infinitely many! To get a better sense of how deep such analogies go, we wrote down a little table:

	\mathbb{Z}	$K[t]$
Units	$\mathbb{Z}^{\times}=\{ \pm 1\}$	$K[t]^{\times}=K \backslash\{0\}$
Prime/Irreducible	$p \in \mathbb{Z}$ is prime iff $p=a b$ implies a or b is a unit.	$f \in K[t]$ is irreducible iff $f=g h$ im- plies g or h is a unit.
Factoring	Any $n \in \mathbb{Z}$ can be written as a unit times a product of primes.	Any $f \in K[t]$ can be written as a unit times a product of irreducibles.
Quotient-Remainder	For all $a, b \in \mathbb{Z}, b \neq 0, \exists!q, r \in \mathbb{Z}$ such that $a=q b+r$ and $0 \leq r<\|b\|$	$\forall f, g \in K[t], g \neq 0, \exists!q, r \in K[t]$ such that $f=q g+r$ and $\operatorname{deg}(r)<\operatorname{deg}(g)$.
Structure of ideals	$\langle a, b\rangle:=a \mathbb{Z}+b \mathbb{Z}=(\operatorname{gcd}(a, b))$	$\langle f, g\rangle:=f K[t]+g K[t]=(\operatorname{gcd}(f, g))$
Prime Divisibility Property	p prime and $p\|a b \Longrightarrow p\| a$ or $p \mid b$.	f irreducible and $f\|g h \Longrightarrow f\| g$ or $f \mid h$.

Studying this table, we can compile a dictionary between the worlds of integers and polynomials:

$$
\begin{aligned}
\text { prime } & \longleftrightarrow \text { irreducible } \\
\text { magnitude } & \longleftrightarrow \text { degree } \\
\text { positive } & \longleftrightarrow \text { monic }
\end{aligned}
$$

Using this dictionary, we can make conjectures about the structure of $K[t]$ based on known results about primes, and vice-versa.

2. Introduction to Field Extensions

Motivating Question. Is $x^{2}+1$ irreducible over \mathbb{F}_{3}, the field with three elements?
If $x^{2}+1$ were reducible over \mathbb{F}_{3}, we would be able to factor it, i.e. we'd have $x^{2}+1=(a x+b)(c x+d)$ in \mathbb{F}_{3}. But this would imply that $x^{2}+1$ has a root in \mathbb{F}_{3}, which it doesn't! Thus, $x^{2}+1$ is irreducible over \mathbb{F}_{3}.

This is reminiscent of the situation over $\mathbb{R}: x^{2}+1$ has no real roots and is thus irreducible over \mathbb{R}. On the other hand, by zooming out from \mathbb{R} to \mathbb{C}, we can find roots of this polynomial. Can we do the same thing in the context of \mathbb{F}_{3} ?

Summary of a lecture by Leo Goldmakher; typed by Jacob Lehmann Duke from notes by Shaurya Taxali.

One obvious approach is to take the number i, which we know squares to -1 , and simply add it to the field \mathbb{F}_{3}. What does this actually mean? More generally, how does one adjoin a number α to a field K ? Tate suggested that this field-denoted $K(\alpha)$-is defined to be the smallest field containing both K and α. To make this more precise, Jonathan suggested $K(\alpha)$ should be the intersection of all fields F containing both K and α, i.e.

$$
K(\alpha):=\bigcap_{\substack{F \supseteq K \\ F \ni \alpha}} F .
$$

At first glance, this seems like a very reasonable definition. Closer inspection, however, reveals that this is a problematic definition. What are "all" the fields F we're looking at? It turns out that the Löwenheim-Skolem theorem implies that the collection of all fields is too big to be a set-it's what's called a proper class. In other words, it's not possible to intersect all sets containing K, because there are simply too many to consider.

Jonathan responded by pointing out that α has to live somewhere to start with. Let's say $\alpha \in L$, a field. Then we can adjust the above definition to fix our earlier problem: given a field K, a field L, and $\alpha \in L$, we define K adjoin α to be

$$
K(\alpha):=\bigcap_{\substack{F \ni \neq \alpha \\ K \subseteq F \subseteq L}} F .
$$

Now that we have a proper definition, we can return to our initial idea: adjoining i to \mathbb{F}_{3}. But there's a problem: by definition, $i \in \mathbb{C}$, so $\mathbb{F}_{3}(i)$ is a field living between \mathbb{F}_{3} and \mathbb{C}. But Felix pointed out \mathbb{F}_{3} isn't a subfield of \mathbb{C}, since $2+2=1$ in \mathbb{F}_{3} but $2+2 \neq 1$ in \mathbb{C} ! Thus it doesn't make sense to adjoin i to \mathbb{F}_{3}.

But maybe this is a linguistic issue? In other words, sure, we can't literally adjoin i to \mathbb{F}_{3} the way they're written, but perhaps there's a subfield of \mathbb{C} that's isomorphic to \mathbb{F}_{3} so that we can adjoin i to this subfield? No:

Proposition 1. \mathbb{F}_{3} does not embed into \mathbb{C}.
Proof. Suppose $\phi: \mathbb{F}_{3} \rightarrow \mathbb{C}$ is a homomorphism; we claim ϕ cannot be injective. To see this, first observe that

$$
\phi([0])=\phi([0]+[0])=\phi([0])+\phi([0]),
$$

whence $\phi([0])=0$. Thus, we have

$$
0=\phi([0])=\phi([1]+[1]+[1])=\phi([1])+\phi([1])+\phi([1])=3 \phi([1])
$$

It follows that $\phi([1])=0=\phi(1)$, so ϕ is not injective.
We conclude that there's no way to adjoin the number $i \in \mathbb{C}$ to the field \mathbb{F}_{3}, since the proposition above shows that we can't describe \mathbb{F}_{3} using the language of complex numbers (and in particular, there's no good way to describe the interaction between i and \mathbb{F}_{3}). Notice that the heart of the proof above is the idea that $[1]+[1]+[1]=[0]$ in \mathbb{F}_{3} but $1+1+1 \neq 0$ in \mathbb{C}. This idea motivates a useful definition:
Definition. The characteristic of a field K (denoted by char K) is the least positive $n \in \mathbb{N}$ such that

$$
\underbrace{1+1+\cdots+1}_{n \text { times }}=0 .
$$

If no such n exists, then we say that char $K=0$.
Proposition 2. If char $K \neq$ char K^{\prime}, then K does not embed into K^{\prime}.
Proof. On the problem set.
Remark. Note that Proposition 2 immediately implies that if $K \simeq K^{\prime}$, then char $K=$ char K^{\prime}. The converse of this statement does not hold, however.

It turns out that the characteristic of a field is always either 0 or a prime (see this week's problem set). In practice, proofs of theorems about field theory often split into two cases: characteristic 0 and positive characteristic, employing two different approaches. This led us to a story about Hironaka and his resolution of singularities theorem.

When we discussed generating a field from a given set of elements, we required two additional pieces of information: a small field and a large ambient field. But as we've seen, we don't need to require that the small field literally live inside the large one; an isomorphic copy will do. We formalize this in the following definition:

Definition. Given two fields K and L we say that L is a field extension of K if and only if K embeds into L, i.e. that there exists an injective homomorphism $K \hookrightarrow L$.

This is all great, but doesn't resolve our initial motivating question about solving $x^{2}+1=0$ over \mathbb{F}_{3}. It turns out this is possible, as was first discovered by Kronecker in the 1880s:

Theorem 1. Given $f \in K[t]$, there exists a field extension L of K such that f has a root in L.
We'll prove this theorem, and apply it to resolve our motivating question, next class.

