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Recall that last class we talked about irreducible polynomials and their similarity to prime numbers. One
key difference between irreducible polynomials in Q[x] and prime numbers is that there are simple tests for
the former that allow us to recognize them. How do we tell if a given f ∈ Q[x] is irreducible? First note
that multiplying by a constant doesn’t affect irreducibility, so we might as well clear all the denominators and
assume f ∈ Z[x].

The goal of today is to introduce six tests for irreducibility. As we go, we’ll test them on the following
example polynomials:

• x3 + x+ 1
• x4 + 1
• x4 + 4

Just by looking at them, can you tell which ones are reducible?

1. RATIONAL ROOT TEST

Before stating this in full generality, we give a special case that’s striking and easy to remember:

Version 1.0. If f ∈ Z[x] is monic and α is a real root, then α is either an integer or is irrational.

Remark. Right away, this gives an instant proof that
√
2 is irrational. More generally, it instantly follows that

k
√
n is always irrational, unless n is a perfect k-th power.

It turns out we can make the above theorem more precise (I’ve highlighted the only change in blue):

Version 2.0. If f ∈ Z[x] is monic and α is a real root, then α is either an integer divisor of f(0) or is irrational.

Example 1. This result implies that the only possible rational roots of f(x) = x3+x+1 are ±1. We can easily
confirm that neither of these is a root, however! Since any factorization of f must involve a linear factor, we
conclude that f must be irreducible.

Example 2. CAUTION. The same approach as above shows that x4+1 and x4+4 have no rational roots, but we
cannot conclude that these polynomials are irreducible. Indeed, it turns out that x4 + 4 is reducible! What
the rational root test does imply, however, is that if these two polynomials factor, they must factor as a product
of two irreducible quadratics.

The versions of the rational root test above restricted our polynomial to be monic. It turns out that with a bit of
effort, one can derive a more general version from the previous one:

Version 3.0. If f ∈ Z[x], say f(x) = a0 + a1x + . . . + anx
n, then any rational root takes on the form k

ℓ
with

ℓ | an and k | a0.

2. REDUCTION TO Z

Proposition 1. If f ∈ Z[x] is reducible over Q, then it is reducible over Z (i.e. there exist g, h ∈ Z[x] such that
f = gh).

We may as well assume our f ∈ Z[x] is primitive, i.e. that the coefficients of f are relatively prime (otherwise,
divide through by the greatest common divisor of the coefficients without changing the reducibility). We can
formalize this observation:
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Lemma 1. For all f ∈ Q[x], there exists a unique αf ∈ Q>0 such that αf · f ∈ Z[x] is primitive.

Felix proposed a proof of existence: multiply the polynomial by the least common multiple of the denominators
to create a polynomial in Z[x], and then divide by the greatest common divisor of its coefficients. You’ll prove
uniqueness on this week’s problem set.

A more remarkable fact about primitive polynomials, discovered by Gauss, is that primitivity is preserved
under multiplication:

Lemma 2. If g, h ∈ Z[x] are primitive, so is gh.

Armed with these two lemmata, we’re ready to prove our proposition.

Proof of Proposition 1. We may assume f is primitive. Since f is reducible over Q, there exist g, h ∈ Q[x]
with f = gh. Our first lemma yields αg, αh ∈ Q such that αg · g and αh · h are primitive. Thus,

αgαh · f = (αg · g)(αh · h).
On the other hand, each of the factors on the right hand side are primitive, whence αgαh · f is primitive (by our
second lemma). But by our first lemma, there’s a unique rational rescaling of f that makes it primitive, whence
αgαh = 1. We conclude that f = (αg · g)(αh · h), and both factors on the right hand side are in Z[x]. □

Remark. Our proof yields more than we claimed: given a factorization of some polynomial over Q, we
showed that essentially the same factorization works over Z, once we rescale the original factors by some
rational number.

Example 3. Consider f(x) = x4 + 1. From the rational root theorem, we know that if this is reducible, then it
must be the product of two quadratics. Now we know more: that we may assume these quadratics have integer
coefficients. This is a powerful constraint! Write our hypothetical factorization as

x4 + 1 = (ax2 + bx+ c)(dx2 + ex+ f)

where a, b, c, d, e, f ∈ Z. Clearly a = d = ±1; without loss of generality we may take a = 1 = d. Similarly,
c = f = ±1. Summarizing, we have

x4 + 1 = (x2 + bx± 1)(x2 + ex± 1)

Following a suggestion of Felix, comparing the coefficients of x2 on either side, we deduce be = ±2, so b and
e must have different parity. On the other hand, comparing the coefficients of x yields b + e = 0, which is
impossible. This contradiction proves that x4 + 1 must be irreducible over Q.

This example demonstrates the power of combining the rational root test with the reduction to Z[x]. Still,
it’s easy to imagine that this becomes much harder for higher degree polynomials. Fortunately, there are other
methods of testing irreducibility.

3. EISENSTEIN’S CRITERION

One famous irreducibility criterion (which will turn out to be quite useful for us) is the following result, first
published by Schönemann and subsequently rediscovered by Eisenstein:

Proposition 2 (Eisenstein’s criterion). Suppose f(x) = anx
n + · · · + a1x + a0 ∈ Z[x]. If there exists a prime

p such that p divides all the coefficients apart from an, and p2 ∤ a0, then f is irreducible over Q.

Example 4. x3 − 3x+ 3 must be irreducible over Q.

Example 5. x5 + 6x4 − 3x3 + 12x2 − 9x+ 3 is irreducible over Q.

Example 6. Consider f(x) = x4 + 1 again. At first glance, it’s clear that Eisenstein doesn’t apply. However,
Jonathan observed that f(x+ 1) is irreducible if and only if f(x) is, and

f(x+ 1) = (x+ 1)4 + 1 = x4 + 4x3 + 6x2 + 4x+ 2.

Suddenly, Eisenstein applies! It follows that f is irreducible.



It turns out that it’s easier to prove Eisenstein’s criterion in the following equivalent form:

Proposition 3 (Eisenstein’s criterion, equivalent formulation). Suppose f ∈ Z[x] is a primitive polynomial of
the form

f(x) = cxn + p · g(x),
where deg(g) < n and g ∈ Z[x]. If p ∤ g(0) then f is irreducible over Q.

Proof. Suppose f is reducible over Q for some f satisfying the hypotheses in Eisenstein’s criterion. Gauss’
lemma implies that we can write

f = hk

for some h, k ∈ Z[x]. We note that both h and k must be primitive, because if either was not, then f would
also not be primitive. We also observe that

p · g(0) = f(0) = h(0)k(0)

so we can conclude that p | h(0)k(0). Since p is prime, we must have p | h(0) or p | k(0). (Below we shall
prove that it must divide both!) Without loss of generality, say p | h(0). Then we can write

h(x) = xℓh1(x) + p · h2(x)

where p ∤ h1(0) and deg h2 < ℓ; in other words, h2 consists of all the contiguous terms of h with coefficients
(starting with the constant term) that are divisible by p. Writing h in this manner, we see that

cxn + p · g(x) = f(x) = h(x)k(x) = xℓh1(x)k(x) + p · h2(x)k(x).

Moving multiples of p to one side, we can rewrite the equation as

xℓ
(
cxn−ℓ − h1(x)k(x)

)
= p ·

(
h2(x)k(x)− g(x)

)
.

In particular, we see that xℓ must divide the right hand side, whence

cxn−ℓ − h1(x)k(x) = p · (some polynomial in Z[x]).
Reducing (mod p) yields

cxn−ℓ ≡ h1(x)k(x) (mod p),
whence

0 ≡ h1(0)k(0) (mod p).
This implies that p divides either h1(0) or k(0), but by construction, p ∤ h1(0). It follows that p | k(0). We’ve
thus proved that p2 | h(0)k(0) = p · g(0), from which it follows that p | g(0). □

Exercise 1. For the proof to work, we require ℓ < n. Verify that this holds.

Exercise 2. Where in the proof did we use the primitivity of f?

4. REDUCTION TO Fp

A classic number theory trick for proving the nonexistence of integer solutions to a given equation is to
reduce (mod n) for some appropriate n and show there are no solutions. For example, there are no solutions to
x2 + y2 = 1599 with x, y ∈ Z because any such solution would satisfy x2 + y2 ≡ 3 (mod 4), which is easily
seen to have no solutions. A similar principle allows us to test irreducibility of a polynomial:

Proposition 4. Given f ∈ Z[x] and a prime p, denote by f the reduction of f (mod p) (i.e. reduce all the
coefficients of f to their equivalent in Fp). If f is irreducible over Fp and deg f = deg f , then f is irreducible
over Q.

Proof. If f is reducible over Q, then it factors as a product of two polynomials in Z[x], each of degree at least
1. Each factor can be reduced (mod p), and f is the product of these factors, hence is reducible over Fp. □



Example 7. Let f(x) = x3 + x+ 1. It’s easy to verify that over F2, f(x) = x3 + x+ 1 has no roots. It follows
that f is irreducible of F2, since the factorization of any cubic must involve a linear factor. We conclude that f
must be irreducible over Q.

Example 8. CAUTION. Noah pointed out that the condition deg f = deg f is necessary for Proposition 4 to
hold. For example, consider

f(x) := 2x2 + 5x+ 2.

It’s easy to see that f is reducible over Q, since f(x) = (2x+ 1)(x+ 2). On the other hand, over F2 we have

f(x) = x,

which is irreducible!

Exercise 3. Where in the proof of Proposition 4 did we require deg f = deg f?

Remark. One natural question is whether the converse of Proposition 4 holds. It does not! For example, it
turns out (and this is highly non-obvious!) that x4 + 1 is reducible over Fp for all p, despite being irreducible
over Q.

5. PERRON’S TEST

The previous tests all relied on divisibility properties of the coefficients. By contrast, the test below uses only
the magnitudes of the coefficients.

Proposition 5 (Perron’s test). Given a monic f ∈ Z[x] of degree n such that f(0) ̸= 0. If the magnitude of the
(n− 1)-st coefficient is larger than the sum of the magnitudes of all the other coefficients, then f is irreducible
over Q.

While harder to remember, it might prevent some confusion by stating the above symbolically. Consider some
polynomial f(x) = xn+an−1x

n−1+· · ·+a1x+a0 ∈ Z[x] with a0 ̸= 0. If |an−1| > |a0|+|a1|+· · ·+|an−2|+1,
then f is irreducible over Q.

Here’s a closely-related result, also due to Perron; I’ve highlighted the parts of the statement that differ from
the above.

Proposition 6 (Follow up to Perron’s test). Given a monic f ∈ Z[x] of degree n such that f(0) ̸= 0 and
f(±1) ̸= 0. If the magnitude of the (n− 1)-st coefficient is equal to the sum of the magnitudes of all the other
coefficients, then f is irreducible over Q.

6. SCHUR’S TEST

In 1929, Schur observed that any finite truncation of the Taylor series for ex was irreducible, and similarly
for the Taylor series for cosx and sinx

x
. This inspired him to prove irreducibility of general Taylor-series-like

polynomials:

Proposition 7 (Schur’s test). Consider any polynomial of the form f(x) = 1+a1x+
a2
2!
x2+ . . .+ an

n!
xn, where

all the ai ∈ Z. If |an| = 1, then f is irreducible over Q.
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