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1. A THRILLING THEOREM

Recall that last class we took up a kind of reverse Kronecker: given α ∈ L/K, can we find f ∈ K[t] such
that K[t]/ ⟨f⟩ ≃ K(α)? Our main idea was to use the first isomorphism theorem for rings (given ϕ a ring
homomorphism out of R, we have R/ker ϕ ≃ im ϕ). Following Tate’s suggestion, we take ϕ : K[t] → K(α)
defined by f 7→ f(α); this is called the evaluation map. Formally, we’ve defined ϕ by

ϕ(f) := f(α).

Note that im ϕ = K[α], since any polynomial in α is the image of the same polynomial with all the α’s replaced
by t. Thus, by the 1st isomorphism theorem, we have

K[t]/ker ϕ ≃ K[α].

Note that the kernel is the set of all polynomials in K[t] that have α as a root:

ker ϕ = {f ∈ K[t] : f(α) = 0}.
Since every ideal in K[t] is principal, we know ker (ϕ) = ⟨mα⟩ for some polynomial mα ∈ K[t]. Thus,

K[t]/ ⟨ma⟩ ≃ K[α].

Recall that Q(
√
2) = Q[

√
2] and Q(i) = Q[i]; these examples suggest that K[α] = K(α) more generally. This

all makes plausible the following:

Thrilling Theorem 1. Given α ∈ L/K, there exists mα ∈ K[t] such that K[t]/ ⟨ma⟩ ≃ K(α). Moreover,
(i) mα is irreducible and

(ii) mα has α as a root.

Proof. There are three claims being made; our discussion led us to prove them in reverse order. First, Noah
pointed out that since mα generates ker ϕ, and the latter consists of all polynomials in K[t] that vanish at α, we
must have mα(α) = 0. This proves claim (ii).

Next, Jake and Felix proposed the following argument to prove that mα is irreducible. Suppose that mα = gh
for some polynomials g, h ∈ K[t]. Thus 0 = mα(α) = g(α)h(α), so either g(α) = 0 or h(α) = 0. Without loss
of generality say g(α) = 0, whence g ∈ ker (ϕ) = ⟨mα⟩; it follows that mα | g, which implies degmα ≤ deg g.
On the other hand, by definition of g, we have deg g ≤ degmα. Thus deg g = degmα, whence h is a unit. We
deduce that mα must be irreducible over K.

Finally, recall that we know K[t]/ ⟨mα⟩ ≃ K[α], so it suffices to prove K[α] = K(α). Jenna noted that since
mα is irreducible over K, the ideal ⟨mα⟩ is maximal, whence K[t]/⟨mα⟩ is a field. Thus K[α] is a field, which
implies that K[α] = K(α). □

We quickly realized that something is amiss: Tate observed that π isn’t the root of any polynomial in Q[t].
(This is not at all obvious, and we’ll discuss it below.) Something in our proof must be wrong! But what?

After some discussion, Zoe figured out the issue. Recall that we asserted that ker ϕ must be principal, and
therefore can be written in the form ⟨mα⟩. The rest of the proof is fine if mα is nonzero, but, as Zoe pointed
out, we neglected the possibility that mα = 0. Note that this really is a polynomial with α as a root.

So, our Thrilling Theorem above isn’t quite right; it handles the case when α is the root of some polynomial
in K[t], but ignores the possibility that no such nontrivial polynomial exists. To make this easier to discuss, we
label these scenarios:
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Definition. Given α ∈ L/K we say α is algebraic over K iff there exists a non-constant f ∈ K[t] such that
f(α) = 0. Otherwise we say α is transcendental over K.

For example,
√
2 is algebraic over Q, as it is the root if t2 − 2. It is also algebraic over R, as it is the root of

t−
√
2. By contrast, π is transcendental over Q (a fact that is difficult to prove!) but algebraic over R (it is the

root of t − π). Note that numbers are transcendental or algebraic over particular fields, and the same number
can be transcendental over one field and algebraic over another.

Now that we have distinguished between algebraic and transcendental numbers, we can state the reverse of
Kronecker’s theorem correctly.

Thrilling Theorem 2 (Legit version). Given α ∈ L/K.

• If α is algebraic over K, then there exists some mα ∈ K[t], irreducible over K, such that mα(α) = 0,
K[t]/⟨mα⟩ ≃ K(α), and K[α] = K(α).

• If α is transcendental over K, then K[t] ≃ K[α]; in particular, K(α) ≃ K(t).

Colloquially, the second part of the theorem asserts that from the point of view of K, α is indistinguishable
from an indeterminate.

1.1. Transcendence of π and e. It’s known that e and π are both irrational; moreover, both e and π are
transcendental. At the heart of both proofs is the following result:

Theorem 1 (Hermite-Lindemann-Weierstrass). If α1, . . . , αn are algebraic over Q and linearly independent
over Q, then eα1 , eα2 , . . . , eαn are algebraically independent over Q, meaning there are no nontrivial polyno-
mial relations among them.

Corollary 2. e is transcendental over Q.

Proof. Take n = 1 and α1 = 1. □

Corollary 3. π is transcendental over Q.

Proof. If π were algebraic over Q then iπ would also be algebraic over Q (see your problem set). But then
Hermite-Lindemann-Weierstrass would imply that eiπ is algebraically independent over Q, a clear contradic-
tion. □

Remarkably, it remains unknown whether e+ π or eπ are irrational, much less transcendental! However:

Corollary 4. At least one of e+ π or eπ is irrational.

Proof. If both were rational, then x2 − (e + π)x + eπ = (x − e)(x − π) would have rational coefficients,
contradicting that e is transcendental. □

2. THE DEGREE OF AN EXTENSION

We finished the lecture by considering two familiar field extensions: Q(
√
2) and Q( 3

√
2). Which is bigger?

Needless to say, this is a silly question: from the point of view of cardinality, they have the same size (they’re
both countable). But observe that

Q(
√
2) = Q[

√
2] = {a+ b

√
2 : a, b ∈ Q} and Q(

3
√
2) = Q[

3
√
2] = {a+ b

3
√
2+ c(

3
√
2)2 : a, b, c,∈ Q}.

The latter feels like a larger extension of Q, since we’re taking linear combinations of more things. This
reminds us of an approach to measuring size from linear algebra: dimension. In fact, these two field extensions
are vector spaces over Q, with bases {1,

√
2} and {1, 3

√
2, ( 3

√
2)2}, respectively. This leads to another definition:

Definition. The degree of a field extension L/K, denoted [L : K], is the dimension of L when viewed as a
vector space over K.



So, for the two previous examples, we have [Q(
√
2) : Q] = 2 and [Q( 3

√
2) : Q] = 3.

Noah clarified our definition by pointing out that vectors are elements of L, while scalars are elements of K.
How do we multiply a scalar (an element k ∈ K) by a vector (an element x ∈ L)? We can’t multiply them
directly, since k might not live inside of L. However, by definition of field extension, there’s an embedding
φ : K ↪→ L, so that we have an isomorphic copy of K sitting inside L. This provides a natural way to define
how to multiply x ∈ L by the scalar k ∈ K:

kx := φ(k)x.

To solidify our intuition for the degree of a field extension, we considered a couple examples.

Example 1. [C : R] = 2
To determine the degree of this extension, we notice that C = {a+ bi : a, b ∈ R}. This suggests that the set

{1, i} forms a basis for C. It is clear from how we described C that {1, i} spans C. Furthermore, 1 and i are
linearly independent over R. Thus {1, i} forms a basis for the space, so the dimension of C as a vector space
over R is 2.

Example 2. [R : Q] = ∞
This extension presents a greater challenge than the previous one. Carlos, Zoe, and Jamie all proposed ideas

for how to prove this. Perhaps the simplest was that Q is countable, so the Q-linear combinations of any finite
set can only span countably many elements of R.
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