
GALOIS THEORY : LECTURE 3

LEO GOLDMAKHER

1. INSOLVABILITY OF THE QUINTIC: ARNOLD VS. GALOIS

Recall that last lecture was devoted to the proof of

Theorem 1 (Arnold, 1963). There is no quintic formula built out of a finite combination of radicals, continuous
functions, and the four field operations +,−,×,÷.

In particular, this implies there’s no quintic formula one can write down using any finite combination of radicals,
the functions exp(), sin(), and cos(), and the field operations. It is instructive to compare this to what we’ll be
able to get from Galois theory:

Theorem 2 (Consequence of Galois theory). Given any polynomial f(x), pick one of its roots rf , and express
it using only the coefficients of f , the four field operations, and radicals. There exists an algorithm which, given
f , predicts the level of nesting of radicals in rf .

For example, we will be able to run this algorithm to deduce that the polynomial x5 − x − 1 requires infinite
nesting of radicals. This immediately implies that there’s no general quintic formula (built solely out of a finite
combination of the field operations and radicals).

Remark. It is in fact possible to express a root of x5 − x− 1 using infinitely many radicals: if x5 − x− 1 = 0
then x5 = 1 + x, whence

x = 5
√
1 + x =

5

√
1 + 5
√
1 + x =

5

√
1 +

5

√
1 + 5
√
1 + · · ·

By truncating the right hand side after a finite number of radicals, one can obtain arbitrarily good approxima-
tions to a root.

Comparing Arnold’s and Galois’ conclusions, we see that each has an advantage over the other. Galois theory
can be used to determine the solvability of a particular polynomial, which is stronger than Arnold’s approach
(which only deals with the solvability of a general quintic). On the other hand, the notion of ‘formula’ in
Galois theory is more restrictive than in Arnold’s approach, as the latter allows the use of arbitrary continuous
functions in addition to radicals.

2. SOLVING THE CUBIC

First, let’s try solving the quadratic to gain some intuition:

x2 + 4x+ 6 = 0

=⇒ x2 + 4x+ 4 + 2 = 0

=⇒ (x+ 2)2 = −2
=⇒ x = −2±

√
−2

The key idea here was to complete the square: we found the perfect square which looks as much as possible
like the given quadratic, and then rewrote the original in terms of that square.
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Remark. We’re happy to say at the end of the above calculation that we ‘solved’ the original, but what is
√
−2?

It’s a solution to x2 = −2. (In fact, it’s a solution by definition – we didn’t actually have to do any work to
solve x2 = −2, which is suspicious!) Thus, all we did was to reduce solving the original equation to finding
the roots of x2 + 2.

Let’s return to the cubic. How do we find the roots of

f(x) := x3 − 3x2 − 3x+ 7?

After trying out a few interesting proposals (which, unfortunately, didn’t seem to lead anywhere), we decided
to try completing the cube, i.e., finding the cube which looks most like f . Playing around a bit, we figured out
that

f(x) = (x− 1)3 − 6(x− 1) + 2.

This reduces our problem to finding the roots of the simpler-looking cubic

g(x) := x3 − 6x+ 2.

Let’s call these roots α, β, and γ. Observe that

g(x) = (x− α)(x− β)(x− γ)
= x3 − (α + β + γ)x2 + (αβ + αγ + βγ)x− αβγ
= x3 + 0x2 − 6x+ 2,

which implies that α+ β + γ = 0, αβ + αγ + βγ = −6, and αβγ = −2. Sadly, trying to solve this system of
equations simply gives us back our original g(x), so it seems we’re stuck.

However, this does tell us something unexpected: that any cubic formula must involve square-roots. To see
this, suppose we magically knew one of the roots, say α. Then finding the other roots would be easy: we have

β + γ = −α and βγ = − 2

α

so defining the auxiliary quadratic

h(t) := (t− β)(t− γ) = t2 + αt− 2

α

and applying the quadratic formula yields

β, γ =
1

2

(
−α±

√
α2 +

8

α

)
.

This shows that any cubic formula must involve square-roots. (Of course, it must also involve cube-roots!)
This insight is nice, but brings us no closer to actually finding the roots of g(x). To understand the situation

better, let’s temporarily return to the familiar case of the quadratic. Suppose that we didn’t know the quadratic
formula, but somehow guessed that the roots of x2 + 4x+ 6 should take the form r ±

√
s. Then

(r +
√
s) + (r −

√
s) = −4 and (r +

√
s)(r −

√
s) = 6,

which immediately implies r = −2 and s = −2. The take-away here is that if we can guess the correct shape
of the roots, then it’s easy to actually find them.

Let’s try this approach to cubics. To inspire our guessing, we first wrote down an explicit comparison between
the quadratic and cubic cases. (Below, we use ω to denote the cube-root of unity e2πi/3.)

Quadratic Cubic
equation solution equation solution
x2 − 1 = 0 x = ±1 x3 − 1 = 0 x = 1, ω, ω2

x2 − a = 0 x = ±
√
a x3 − a = 0 x = 3

√
a, ω 3
√
a, ω2 3

√
a

x2 + bx+ c = 0 x = r ±
√
s x3 − 6x+ 2 = 0 ???



In view of the table, we were led to guess that the roots of the cubic take the form

r + 3
√
s, r + ω 3

√
s, r + ω2 3

√
s.

This would imply

g(x) = (x− (r + 3
√
s))(x− (r + ω 3

√
s))(x− (r + ω2 3

√
s))

= x3 − (3r + 3
√
s+ ω 3

√
s+ ω2 3

√
s)x2 + · · ·

Observing that
1 + ω + ω2 = 0, (1)

our expansion above becomes
g(x) = x3 − 3rx2 + · · ·

which immediately implies r = 0 and greatly simplifies our computations:

g(x) = (x− 3
√
s)(x− ω 3

√
s)(x− ω2 3

√
s) = x3 − s.

Unfortunately, this is clearly false, since no matter how we pick s the linear coefficient won’t match up with the
linear coefficient of g(x). In hindsight, we should have known this plan wouldn’t work, since we were trying
to use two indeterminates to satisfy three conditions (imposed by the coefficients of g). Oops.

Undeterred, we look back at the table comparing quadratic and cubics and try to make a better guess for what
form the roots of the cubic should take. Ian suggested that the three roots should look like

r + s+ t, r + ωs+ ω2t, r + ω2s+ ωt.

Repeating our previous computations under this hypothesis, we find

g(x) = (x− (r + s+ t))(x− (r + ωs+ ω2t))(x− (r + ω2s+ ωt))

= x3 − 3rx2 + · · ·
so once again r = 0, which greatly simplifies our computations. (This, incidentally, is the purpose of complet-
ing the cube.) Thus,

g(x) =
(
x− (s+ t)

)(
x− (ωs+ ω2t)

)(
x− (ω2s+ ωt)

)
= x3 + a1x+ a0

where
a1 = (s+ t)(ωs+ ω2t) + (s+ t)(ω2s+ ωt) + (ωs+ ω2t)(ω2s+ ωt)

and
a0 = −(s+ t)(ωs+ ω2t)(ω2s+ ωt)

We simplify these one at a time. a0 is the easier of the two: pulling ω’s out of the factors we find

a0 = −(s+ t)(s+ ωt)(s+ ω2t) = −(s3 + t3).

The coefficient a1 looks more complicated, but really only has three types of terms which arise when we expand
it: s2, t2, and st. Applying the useful identity (1) shows that both of the s2 and t2 vanish, while the st term has
coefficient −3. Putting all this together, we find

g(x) = x3 − 3st− (s3 + t3)

Thus, st = 2 and s3 + t3 = −2, so we can define the auxiliary quadratic

h(y) := (y − s3)(y − t3) = y2 + 2y + 8.

The quadratic formula implies s3, t3 = −2±
√
−28

2
, whence s, t = 3

√
−1±

√
−7. We can now write down a root

of g(x): it’s r + s + t = 3
√
−1 +

√
−7 + 3

√
−1−

√
−7. Now that we have one root, it’s straightforward to

determine the other two (as discussed above).

Remark. It turns out that the cubic formula one gets from this forces the invention of imaginary numbers, since
it occasionally fails to produce solutions to cubics with three real roots – unless one admits the possibility of
taking the square-root of a negative number. See problem 2.4 for an example of this.
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