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1. KRONECKER’S THEOREM

Recall that last lecture, we introduced the following theorem.

Theorem 1 (Kronecker). Given nonconstant f ∈ K[t], there exists a field extension L/K such that L contains
a root of f .

Before proving the theorem in general, we work through the special case f(t) = t2+1. ConsiderL := Q[t]/(f),
which consists of the equivalence classes with respect to the ideal generated by f . In other words,

L = {[g] : g ∈ Q[t]}
where [g1] = [g2] if and only if g1 ≡ g2 (mod t2 + 1). We claimed that a more explicit way to describe the
elements of L is

L = {[at+ b] : a, b ∈ Q}.

Remark. We claim that all equivalence classes [at + b] are distinct. For, suppose not. Then we have some
[at+ b] = [ct+ d], say. But this implies [(a− c)t+ (b− d)] = [0], or in other words,

(t2 + 1) | (a− c)t+ (b− d).
Since the degree of the left side is larger than the degree of the right, this can only happen if the right side is 0,
i.e. if a = c and b = d as claimed.1

We also note that L is an extension of Q. We show this by finding an injective homomorphism from Q into
L. It turns out that the most natural mapping α 7→ [α] fits the bill. Indeed, it is injective by the above remark
regarding distinctness, and is clearly a homomorphism.

Finally, we observe that there is a root of f(t) := t2 + 1 in L, namely [t]. Indeed, given our embedding of Q
in L, we see that in the language of K the polynomial f is written f(t) = [t]2 + [1]. Thus

f([t]) = [t]2 + [1] = [t2 + 1] = [0].

Having considered a special case, we’re now ready to attack the general case of Kronecker’s Theorem. We
do this in three steps:

(1) Show L is a field.
(2) Show L/K.
(3) Show f has a root in L.

Proof. First note that we may assume that f is irreducible over K[t]. Indeed, if f were not irreducible, we can
take an irreducible factor and proceed with the same proof.

Why is L a field? Well, (f) is a maximal ideal of K[t], whence K[t]/(f) must be a field. See the supplemen-
tary notes on Ring Theory for more on these assertions.

Next, we wish to show that L is a field extension of K. In other words, we wish to show that there exists an
injective homomorphism φ : K ↪→ L. Once again we consider the most natural map: α 7−→ [α]. This is easily
checked to be an injective homomorphism.
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All that remains is to show that f has a root in L. We claim that [t] is a root:

f([t]) = [f(t)] = [0].

The theorem is proved! �

Let’s briefly return to our example,

L = Q[t]/(t2 + 1) = {[at+ b] : a, b ∈ Q[t]}.
Does L look familiar? Indeed it does: it’s isomorphic to Q(i). We can even construct an explicit isomorphism
L → Q(i): the one which maps [at + b] 7→ ai + b. It’s straightforward to verify that this it’s a bijective
homomorphism.

Above we applied the proof of Kronecker’s theorem to construct Q(i). What if instead we wanted to construct
Q(ω), where ω = e2πi/3? Andrew observed that ω is a root of t3 − 1, and thus suggested

Q(ω) ' Q[t]/(t3 − 1) = {[at2 + bt+ c] : a, b, c ∈ Q}
However, there was a problem with this: by playing around we found that [3t2 − 3t] + [t − 1]3 = [0], which
simplifies to

[t− 1][t2 + t+ 1] = [0].

However, there are no zero-divisors in a field! The other Andrew identified the problem: t3−1 isn’t irreducible,
which means that the ideal generated by it isn’t maximal, which means that when we mod out by this ideal we
don’t get a field!

Thus, it’s important for us to be able to identify whether or not a given polynomial is irreducible. And so,
without further ado...

2. TESTS FOR IRREDUCIBILITY

Test 1 (Rational Root Test). Suppose f(t) = ant
n + ... + a1t + a0 ∈ Z[t]. If r

s
is a reduced fraction such that

f( r
s
) = 0, then r | a0 and s | an.

Example. Let f(x) = x3 + x+ 1. The rational root test states that for any root r
s
, it must be the case that r | 1

and s | 1, which is only true for r
s
= ±1. However, f(±1) 6= 0, so f has no roots over Q. We can then conclude

that f is irreducible, since f has degree 3 and has no linear factors.

CAUTION! Just because f ∈ Q[t] doesn’t have a root in Q doesn’t mean f is irreducible over Q. Indeed, the
polynomial x4 + 3x2 + 2 = (x2 + 1)(x2 + 2) is reducible but does not have a root in Q.

Test 2 (Reduction to Z). It’s easy to see that if f is irreducible over Q, then it must also be irreducible over Z.
Perhaps surprisingly, the converse also holds:

Proposition 2. Given f ∈ Z[t]. Then f is irreducible over Q if and only if f is irreducible over Z
Before proving this, we describe our primary tool:

Lemma 3 (Gauss). The product of two primitive polynomials is a primitive polynomial.

Of course to make sense of this we need to define the term primitive...

Definition. A polynomial f ∈ Z[t] is primitive if and only if all of its coefficients are relatively prime.

Proof of Proposition 2. We show that if f is reducible over Q, then it is also reducible over Z. First off, we
may as well assume f is primitive, because if not we can divide through by the gcd of the coefficients of f ,
creating a primitive polynomial which is reducible iff the original was.

Now suppose f = gh for some g, h ∈ Q[t]. There exists some α, β ∈ Z such that αg, βh ∈ Z[t], and αg, βh
are both primitive. Now observe that

αβf = (αg)(βh).

This implies that αβf is the product of two primitive polynomials, hence must itself be primitive. But, since
we also assumed f to be primitive, we deduce that α, β = ±1. Therefore, it must have been the case that
g, h ∈ Z[t], and the theorem is proved. �



Test 3 (Eisenstein Criterion). Suppose f(x) = anx
n+ ...+ a1x+ a0 ∈ Z[x]. If there exists a prime p such that

p does not divide the leading coefficient, p divides all other coefficients, and p2 does not divide the constant
term, then f is irreducible over Q.

For example, x3 − 3x + 3 must be irreducible over Q. We will prove Eisenstein’s criterion (and see other
examples of how useful it can be!) next time.
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