
GALOIS THEORY : LECTURE 8

LEO GOLDMAKHER

1. EISENSTEIN’S CRITERION, ROUND TWO

We ended last lecture by discussing the irreducibility of polynomials and several tests that could be used to
determine irreducibility, including Eisenstein’s criterion. The formulation of the criterion from last lecture can
be replaced by the following equivalent formulation.

Theorem 1 (Eisenstein’s Criterion). Suppose f ∈ Z[t] is a primitive polynomial which can be written in the
form f(t) = ctn+pg(t) for some prime p and some g(t) ∈ Z[t] with deg g < n. If p - g(0) then f is irreducible
over Q.

Wyatt pointed out that we don’t have to mention that p - c, since we already know that f is primitive. We
gave the following example to demonstrate the use of the criterion:

Example 1. Prove that f := 2
9
t5 − 5t3 + 2t− 1

3
is irreducible over Q.

We observe that if we factor out 1
9
, we can write f = 1

9
(2t5 − 45t3 + 18t − 3). Applying

Eisenstein’s criterion with p = 3 to the polynomial 9f(t) shows that 9f(t) is irreducible over
Q, whence so is f .

Anya pointed out that the criterion can sometimes apply to nonprimitive polynomials as well, since they can
be made into primitive polynomials by factoring out the greatest common divisor of the coefficients.

Proof of Eisenstein’s criterion. Suppose f is reducible over Q for some f satisfying the hypotheses in Eisen-
stein’s criterion. Gauss’ lemma implies that we can write

f = hk

for some h, k ∈ Z[t]. We note that both h and k must be primitive, because if either was not, then f would also
not be primitive. We also observe that

p · g(0) = f(0) = h(0)k(0)

so we can conclude that p | h(0)k(0). Since p is prime, we must have p | h(0) or p | k(0). (Below we shall
prove that it must divide both!) Without loss of generality, say p | h(0). Then we can write

h(t) = t`h1(t) + ph2(t)

where p - h1(0) and deg h2 < `; in other words, h2 consists of all the contiguous terms of h with coefficients
(starting with the constant term) that are divisible by p. Writing h in this manner, we see that

ctn + pg(t) = f(t) = h(t)k(t) = t`h1(t)k(t) + ph2(t)k(t).

Moving multiples of p to one side, we can rewrite the equation as

t`
(
ctn−` − h1(t)k(t)

)
= p

(
h2(t)k(t)− g(t)

)
.

In particular, we see that t` must divide the right hand side, whence

ctn−` − h1(t)k(t) = p× (some polynomial in Z[t]).
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Reducing (mod p) yields
ctn−` ≡ h1(t)k(t) (mod p),

whence
0 ≡ h1(0)k(0) (mod p).

This implies that p divides either h1(0) or k(0), but by construction, p - h1(0). It follows that p | k(0). We’ve
thus proved that p2 | h(0)k(0) = pg(0), from which it follows that p | g(0). �

Exercise 1. For the proof to work, we require ` < n. Verify that this holds.

Exercise 2. Where in the proof did we use the primitivity of f?

As an aside, Eisenstein was a prolific mathematician and produced many results besides his criterion, pub-
lishing more than 20 papers in a single year. Despite his mathematical success, he died destitute at the age of
29. E. T. Bell claims that Gauss once remarked, “There have been but three epoch-making mathematicians,
Archimedes, Newton, and Eisenstein.”

At first sight, Eisenstein’s criterion seems to have limited utility, since most polynomials cannot be written
in the requisite form. However, with an appropriate change of variables it can be applied to many polynomials.
Here’s one example.

Example 2. Prove that f(t) = 1 + t+ t2 + · · ·+ t16 is irreducible over Q.

First, note that f(t) is a geometric series, so we can write

f(t) =
t17 − 1

t− 1
.

Making the substitution t 7→ t+ 1 and applying the Binomial Theorem yields

f(t+ 1) =
(t+ 1)17 − 1

(t+ 1)− 1

=
t17 +

(
17
1

)
t16 + · · ·+

(
17
16

)
t+

(
17
17

)
− 1

t

= t16 +

(
17

1

)
t15 + · · ·+

(
17

16

)
Now we can apply Eisenstein’s criterion: observe that 17 |

(
17
n

)
whenever 1 ≤ n ≤ 16, and that(

17
16

)
= 17. It follows that f(t+ 1) is irreducible, and we deduce that f(t) is irreducible.

It turns out that we can replace the exponent 16 in the example above by p− 1 for any prime p. Primality is
required for irreducibility, however; see Problem Set 5. Polynomials like the one above play an important role
in algebraic number theory, and will make an appearance later in the semester when we prove the possibility
of a straightedge-and-compass construction of the regular 17-gon.

2. ANOTHER TRICK FOR TESTING IRREDUCIBILITY

As a motivating example for our next technique, consider the following puzzle.

Question 1. What integral values of x and y satisfy x2 + y2 = 1234567?

Michael observed that for any solution x, y, we would have

x2 + y2 ≡ 3 (mod 4).

This is impossible, however, since it can be directly verified that any square must either be congruent to 0 or
1 (mod 4). Therefore, there can be no integers x and y satisfying the initial equality. Thus, rather than working
with the given equality directly, we reduced to a small modulus and then were able to conclude with ease. The
next proposition follows the same philosophy.



Proposition 2. Given f ∈ Z[t] and a prime p, denote by [f ] the reduction of f (mod p). If [f ] is irreducible
over Fp and deg f = deg[f ], then f is irreducible over Q.

Example 3. Is f(x) = x3 − 4x2 + 7x− 3 reducible over Q?

We notice that over F2, f reduces to

[f ](x) = x3 + x+ 1.

Since [f ] is a cubic polynomial, it is reducible if and only if it has a linear factor. We can check
and see that neither 0 nor 1 is a root of [f ]. It follows that [f ] is irreducible over F2, so the
proposition implies that f must be irreducible over Q.

Sadly, the converse of the proposition is not true.

Example 4. The polynomial x4+1 is reducible over Fp for all primes p, but it is irreducible over Q. (Eli proved
the irreducibility part of this claim by making the change of variables x 7→ x+ 1 and applying Eisenstein. The
reducibility part of the claim, however, is highly non-obvious. We shall prove it later this semester.)

The idea of the proof of the proposition is not too difficult.

Proof (sketch) of Proposition. If f is reducible over Q, then it factors, and each factor can be reduced (mod p).
Then [f ] is the product of these factors, hence is reducible over Fp. �

Exercise 3. Where in this argument do we require deg f = deg[f ]?

We now apply the proposition to a more complicated example.

Example 5. Prove that f(x) = x4 + 2 is irreducible over Q.

Over F2 we have [f ](x) = x4, which is reducible so the proposition doesn’t apply. Over F3,
[f ](x) = x4 − 1 is reducible, so again the proposition doesn’t apply. Over F5, however, the
situation is more complicated. It is not hard to see that [f ] has no roots in F5. However, it may
still be the case that [f ] is reducible, since it may be possible to write

[f ](x) = (x2 + ax+ b)(x2 + cx+ d)

for some a, b, c, d ∈ F5. (Following a question of Daishiro, we noted that if the two quadratic
factors weren’t monic we could always factor out the leading coefficients to make them so.)
Equating coefficients of the powers of x, this gives us four equations:

a+ c = 0

d+ ac+ b = 0

ad+ bc = 0

bd = 2

Solving for b, we find that b = ±d. However, considering the last equation, there is no b ∈ F5

such that b2 = ±2. It follows that [f ] does not have a factorization into quadratics, and so [f ] is
irreducible over F5. We conclude by the proposition that f is irreducible over Q.

As Ben pointed out, we could have also applied Eisenstein to f to check for irreducibility. These three
example polynomials demonstrate how the proposition can be used effectively to check for irreducibility, but it
may not always be the best test – and may sometimes fail completely.

There are many other ad hoc tricks that can be used for testing for irreducibility. Here’s a beautiful but
little-known result due to Schur.



Schur’s Lemma (1929). For any ci ∈ Z and any n ∈ N, the polynomial

f(x) = 1 + c1x+
c2
2!
x2 +

c3
3!
x3 + · · ·+ cn−1

(n− 1)!
xn−1 ± 1

n!
xn

is irreducible over Q.

As special cases of Schur’s Lemma, we see that any truncation of the Taylor series expansions of the exponential
function, cosine function, and sin(x)

x
are all irreducible.

We spent the last few minutes of class reviewing some notation. The symbol Q[x] represents the ring of
polynomials with coefficients in Q with a single indeterminate x. The symbol Q(x) is the smallest field
containing x. Without knowing any further information, all we can conclude is that

Q(x) =

{
p(x)

q(x)
: p, q ∈ Q[x], q 6= 0

}
.

Note that if we specify x, the two spaces above may be the same. For example, we have Q[i] = Q(i).
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