
GALOIS THEORY : LECTURE 11

LEO GOLDMAKHER

1. ALGEBRAIC FIELD EXTENSIONS

Given α ∈ L/K, the degree of α overK is defined to be degmα, wheremα is the minimal polynomial of α over
K; recall that this, in turn, is equal to [K(α) : K]. The notion of degree holds even when α is transcendental
over K, since in this case we say the degree of α is infinite.

Remark. Note that α is algebraic over K if and only if α has finite degree over K.

Question 1. Does the above remark hold for field extensions? I.e. is a field extension algebraic if and only if it
has finite degree?

In order to answer this question, we first need to define what we mean by an algebraic field extension.

Definition. A field extension L/K is algebraic if and only if every α ∈ L is algebraic over K.

Now we want to know whether a field extension is finite if and only it is algebraic. This turns out to be false:

Example 1 (Michael). Let L = Q(
√
2,
√
3,
√
5, . . .). Then [L : Q] =∞, but every α ∈ L is algebraic over Q.

By our example, we see that an algebraic field extension is not always finite. Eli conjectured that the other
direction is true, i.e. that a finite field extension must always be algebraic. His intuition for this was that any
transcendental number would require an infinite basis to be expressed. This idea leads us to the following
proposition.

Proposition 1. If L/K is finite, then it is algebraic.

Remark. Whenever we refer to an extension as finite, we implicitly mean finite degree.

Proof. Let [L : K] = n and α ∈ L. We want to show that α is algebraic over K. Notice that since the degree
of L/K is n, any collection of n+ 1 elements is linearly dependent. Thus the set {1, α, α2, . . . , αn} is linearly
dependent and so there exist ci’s from K, not all zero, such that

c0 + c1α + c2α
2 + · · ·+ cnα

n = 0.

It follows that α satisfies some polynomial over K, and is therefore algebraic. Since this is true for an arbitrary
element of L, we conclude that L/K is algebraic. �

Remark. We’ve actually proved slightly more than we claimed: that degα ≤ [L : K] for any α ∈ L/K.

From the proposition we deduce the following corollary.

Corollary 2. If α is algebraic over K, then K(α)/K is algebraic.

Proof. If α is algebraic over K, then it must have finite degree, whence [K(α) : K] = degmα is finite. The
proposition implies K(α)/K is algebraic. �

This means that every element generated by some algebraic α and the field K is also algebraic over K. We can
iterate this idea:

Corollary 3. If α, β are algebraic over K, then K(α, β)/K is algebraic.
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Proof. If we can show that [K(α, β) : K] is finite, then we are done. Consider the following tower of fields.

K(α, β)

K(α)

K

?

finite

We know that [K(α) : K] is finite, so by the Tower Law it suffices to show that
[K(α, β) : K(α)] is also finite. Note that β is algebraic over K, hence must also
be algebraic over K(α). But this means β has finite degree over K(α), whence
[K(α, β) : K(α)] is finite. This concludes the proof. �

In particular, we immediately deduce

Corollary 4. If α, β algebraic over K, then α + β and αβ are algebraic over K.

For example, this allows us to assert that
√
2 +
√
−5 is algebraic without finding a polynomial that it satisfies.

2. (OLD) GEOMETRY

A long time ago the Greeks did a whole lot of geometry. They even developed integral calculus, even though
it was phrased in rather different terms (since algebra hadn’t been invented yet). For example, Archimedes
determined a formula for the area between a parabola and an intersecting line.
To do this, he first constructed the largest triangle en-
closed by the two intersecting points and the parabola.
If this triangle is T , then the regions to the right and left
of T are also parabolas intersected by lines, and so we
can insert the largest triangles into these regions, T ′ and
T ′′. Archimedes then noted that

Area T = 4(Area T ′ + Area T ′′).

Iterating this process, the area of the enclosed region is
given by

Area T
(
1 + 1

4
+ 1

16
+ 1

64
+ · · ·

)
.

By finding a way of determining the area of the largest
inscribed triangle, Archimedes was thus able to find the
area of the enclosed region, in effect integrating a qua-
dratic long before Newton and Leibniz.

T

In fact, both differentiation and integration we used in mathematics long before Newton and Leibniz. How-
ever, these existed as totally separate techniques; Newton and Leibniz’s key insight was the Fundamental
Theorem of Calculus which provided the relationship between differentiation and integration.

A lot of Greek geometry was based on geometric constructions using compass and straightedge. Here’s how
these two tools work. Given any two points x and y, a compass allows us to draw a circle centered at x that
passes through y; a straightedge allows us to draw a straight line through both points (and extending arbitrarily
far). We will work through some basic examples of constructions using these tools to get a sense for what they
can accomplish.

1) Lengths
Given a unit length, we can construct a segment of length 2. We do this by taking our segment and using the
compass to draw a circle from one point with radius 1. Then using a straightedge we extend this to create a
segment of length 2.



Given a unit length, we can also construct a segment of length 3. Using the same technique as before, we can
add another segment of unit length to the end:

In this way we can construct all positive integer lengths.
What about fractional lengths? For example, can we
construct a segment of length 1

2
? Using the compass to

make two unit circles centered at A and B, we can con-
nect their intersecting points via straightedge to bisect
the original line, thus producing a line segment with
length 1

2
(right).

A B

C

D

Note that by this construction we also created a perpendicular line to our original segment.

2) Perpendicular & Parallel Lines
Given a line L and point P , we can construct a line per-
pendicular to L passing through P . Starting with the
line segment L with endpoints A and B, we can con-
struct a circle centered at P that passes throughL twice.
Using the same construction as before, we can use the
intersecting points, C andD, to construct a perpendicu-
lar bisector. This line segment will pass through P and
thus be a line perpendicular to L passing through P .
Note that this construction works whether or not P lies
on L.

A B

P

C D

Next, given a line L and a point P /∈ L, we can con-
struct a line parallel to L passing through P . To do this,
we start by constructing a line L′, perpendicular to L,
such that L′ passes through P . Next we construct a per-
pendicular line L′′ to L′ that passes through P . Thus
L′′ is parallel to L and passes through P . L

L′

L′′P

3) More complicated lengths

Given a unit length we can construct a segment of
length 1

3
. To do this, we first construct a segment of

length 3, and another segment of length 1 coming from
point A. Then we connect these to form a triangle.
From point D, which is a unit from A, we construct a
line parallel to the line BC, which then passes through
AC at point E. By similar triangles, AE has length 1

3
.

A B

2

C

D

E

1

This idea can be used to construct any fractional length a
b
.



4) Squares

Given a unit length, we can construct a unit square.
First we extend rays on either side ofAB perpendicular
to AB. Then we can use an arc centered at A starting
at B to get line segment AE, of length 1. Repeat this
from point B to get segment BF of length 1. Finally
we can connect points E and F to get a unit square.

A B

E

C D

F

Next, given a square, we can construct a square with
twice the area of the original. To do this, we draw
a line segment through the diagonal of the original
square. Then by the method above, we construct a
square whose sides are all this length. If the original
square had side lengths a, this one has side lengths a

√
2,

so it has twice the area.

A
B

C
D

E

F

Exercise 1. Given a square, construct a square with area three times that of the original.

5) Angles
We saw before how to construct a 90◦ angle. We can construct other angles, too!

For example, we can construct a 60◦ angle. We can
proceed as though we were constructing a perpendicu-
lar bisector. However instead of taking the intersecting
points of the circle and connecting them, we take one
point and connect it to both centers of the circles. This
yields an equilateral triangle, and so every interior an-
gle has 60◦.

Observe that this allows us to construct 30◦ angles as well, simply by drawing in the perpendicular bisector.

More generally, it turns out that it’s possible to bisect
any given angle. To do this, we draw a circle centered
at the point A. Using the intersecting points B and C
we then construct a perpendicular bisector to the line
BC; this bisects the original angle.

A

B

C



6) Regular polygons
Given a line segment, we can construct a regular hexagon (i.e. hexagon with equal angles and side lengths).
Using a series of intersecting circles we can construct a regular hexagon from the intersection points as shown
below.

A
B

CD

E

F G

The Greeks also constructed regular n-gons for n = 3, 4, 5, 6, 8, 10, and 12. Gauss was the first to give an
explicit construction of the regular 17-gon.

7) Duplicating a Parallel Line
One potential issue with a compass is that it might not
hold its shape. In other words, it might not be possible
to use it to measure length, since as soon as you pick
it up off the page the compass might collapse. It turns
out that this isn’t an issue: given a line segment, AB,
we can construct a parallel line segment starting at an
arbitrary given point, C. We do this by constructing a
parallelogram with one side as our line segment includ-
ing the point C.

A
B

C D

3. IMPOSSIBLE CONSTRUCTIONS

While the Greeks accomplished many geometric constructions, there were a number of difficult problems they
were never able to solve. Here are four of these:

(1) Double a cube. Given a cube, construct a cube with twice the volume of the original.
(2) Trisect a given angle. Given an angle, divide it into three equal angles.
(3) Square the circle. Given a circle, construct a square with the same area.
(4) Construct a regular heptagon. Construct a 7-gon with equal angles and side lengths.

Next class we will show that (1), (2), and (4) are impossible using only a compass and straightedge. If we take
on faith that π is transcendental over Q, then we will also be able to show that (3) is impossible.
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