
GALOIS THEORY: LECTURE 20

LEO GOLDMAKHER

1. REVIEW: THE FUNDAMENTAL LEMMA

We begin today’s lecture by recalling the Fundamental Lemma introduced at the end of Lecture 19. This will
come up in several places during today’s lecture and will be helpful to have fresh in our minds.

Lemma 1.1 (Fundamental Lemma). Given a finite and Galois extension L/K and some α ∈ L, we can write
the minimal polynomial of α over K as

mα(x) =
∏
β∈A

(x− β)

where A := {σ(α) : σ ∈ G}.

Remark. In other words, the minimal polynomial is defined to be the one whose roots are precisely all the
distinct Galois conjugates of α.

This is a powerful result – it gives an explicit connection between the Galois group of L/K and the elements
living in L. We’ve already seen it used previously (implicitly) in proofs. Now we see a new application, to the
study of normal extensions.

2. NORMAL EXTENSIONS

Recall that we have three equivalent definitions of what it means for L/K to be Galois:
• |G| = [L : K],
• L is the splitting field of some separable polynomial in K[x], and
• LG = K.

(As usual, G := Aut(L/K).) The goal of this section is to introduce and prove a fourth equivalent condition.
Not only is it a useful criterion, it is also the one usually given as the definition of Galois-ity in most courses
on Galois theory. To motivate the idea, we start with a question.

Question 1. Given L/K a finite (but not necessarily Galois) extension and some irreducible f ∈ K[x], how
many roots does f have in L?

As Michael pointed out, we know by general field theory (see problem 5.4) that f has ≤ deg f roots in L. Of
course the ideal circumstance would be to have precisely deg f roots in L, but this doesn’t always happen; for
example, x2+1 has no roots in Q. This is sort of a trivial example, the issue being that we haven’t extended the
field at all. But even an honest extension might not extend far enough to contain all the roots of a polynomial.
For example, Ben pointed out that Q(ω 3

√
2) contains only one root of x3 − 2 ∈ Q[x].

Empirically, this final scenario seems abnormal – the more common situation is either for our extension to
not contain any of the roots (e.g. Q(

√
2) doesn’t contain any roots of x2 + 1) or for it to contain all of them.

This motivates a definition:

Definition (Normal Extension). L/K is called a normal extension if and only if every irreducible polynomial
f ∈ K[x] has either no roots or all of its roots in L.
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Thus, if f has any roots in a normal extension L/K, all of its roots must live there. This doesn’t guarantee
that we have deg f roots in L, however, since f might not be separable! So, the ideal situation is one in which
an extension is finite, normal, and separable; this would guarantee that any polynomial which splits in the
extension has the right number of roots. This ideal situation turns out to be equivalent to Galois-ity:

Proposition 2.1. Given a finite extension L/K. The extension L/K is Galois if and only if it is normal and
separable.

Remark. Recall that a separable extension L/K is one in which the minimal polynomial for any element of L
over K is separable.

Proof. The Fundamental Lemma is the key to proving the forward direction. The reverse direction is a synthe-
sis of familiar techniques.

( =⇒ ) Given a finite Galois extension L/K, set G := Gal(L/K).
We first show that L/K is normal. Suppose we have some irreducible polynomial f ∈ K[x] that has

a root α ∈ L; our task is to show that all other roots of f must also live in L. Following a suggestion
of Beatrix, we note that we may assume f is monic (else, we can rescale without changing the roots of
f ). Thus f is an irreducible monic polynomial with coefficients in K and α as a root – in other words,
f = mα, the minimal polynomial of α over K. The Fundamental Lemma then implies that the roots of
f are precisely the Galois conjugates of α, i.e. {σ(α)}σ∈G. Since G consists of automorphisms of L,
we immediately deduce that all the roots of f live in L. We’ve proved that L/K is normal.

Next we show that L/K is separable, i.e. that for any α ∈ L the minimal polynomial mα ∈ K[x] is
separable. But, as Trevin pointed out, this is an immediate consequence of the Fundamental Lemma!
Thus L/K is separable.

(⇐= ) Given L/K finite, normal, and separable, our task is to show that it is Galois. Michael suggested a good
place to start is with our finiteness assumption, meaning that we can write L = K(α1, α2, . . . , αn) using
some minimal set of generators. (Minimal here means that none of the αi can be removed.) Ben noted
that our usual way of showing an extension is Galois is by building a separable polynomial in K[x] that
has L as its splitting field. Ian provided a method for such a process that involves the product of the
minimal polynomials of the αi.

Specifically, let mαi
∈ K[x] be the minimal polynomial of αi over K. Because L/K is a normal

extension and because we know one root of the irreducible mαi
lives in L (namely, αi), normality gives

us that all roots of mαi
must live in L. Furthermore, L/K is separable, so all the roots of mαi

are
distinct. Finally, Ben pointed out that two minimal polynomials share a root if and only if they are
the same polynomial. Thus, the least common multiple of all the mαi

is a separable polynomial with
coefficients in K, all of whose roots live in L. Moreover, L is the splitting field of this polynomial,
since it has all the αi as roots. We conclude that L/K is Galois. �

Remark. In class we expressed the LCM of the mαi
using a version of our notation trick: we set

m(x) :=
∏
f∈F

f(x)

where F := {mαi
: 1 ≤ i ≤ n}. Then m ∈ K[x] is separable by the considerations in the proof above, and L

is the splitting field of m over K.

The proposition demonstrates a close connection between normality and Galois-ity. In view of this connec-
tion, the following result might not be so surprising.

Lemma 2.2. An extension F/K is finite and normal if and only if F is a splitting field of some f ∈ K[x].

Remark. This is very similar to one of our equivalent conditions for Galois-ity, but without the requirement
that f be separable. For a proof of this lemma, see the supplementary document on the Isomorphism Lifting
Lemma on the course website. (The ILL has other nice consequences too, e.g. uniqueness of splitting fields.)



3. UNIQUE FACTORIZATION OF FINITE GROUPS: KRULL-SCHMIDT

Our goal for the next couple of lectures will be to explore Galois’ celebrated criterion for solvability. The
two key observations he made are the following:

(1) if f ∈ Q[x] has all its roots expressible in radicals, then there exists a tower of field extensions, starting
at Q and ending at the splitting field of f over Q, such that each extension in the tower is Galois and
has abelian Galois group; and

(2) if an irreducible f ∈ Q[x] has a root expressible in radicals, then all roots of f are expressible in
radicals.

Remark. Both of these observations hinge on the concept (introduced by Galois) of a radical extension. We
will formalize this next class, but for now we noted that the second observation above is intuitively consistent
with the Fundamental Lemma. Indeed, given a root α of an irreducible polynomial f ∈ Q[x], the Fundamental
Lemma implies that all the other roots are the Galois conjugates of α. But from our experience, Galois conju-
gates change a radical by a ‘sign’; a

√
3 might become a−

√
3, or a 4

√
2 might become a 4

√
−2. Thus, we expect

all the other roots of f to also be expressible in radicals, just with different signs scattered throughout. (As we
shall see, this isn’t quite right – we need to allow roots of unity in addition to sign changes.)

Combining Galois’ observations, we deduce that any irreducible polynomial with at least one root expressible
in radicals has a splitting field which is connected to Q via a tower of Galois extensions which all have abelian
Galois group. To make use of this to prove insolvability of the general quintic, we follow Galois and study the
theory of finite groups. We begin with a motivating question.

Question 2. Recall that any whole number can be decomposed into a product of primes in a unique way
(up to ordering). For example, 60 = 2 × 2 × 3 × 5, and apart from the order in which we write these four
numbers, there’s no other way to decompose 60 into a product of primes. Is there an analogue for finite groups?
Specifically, given a finite group G is there a way to decompose it into prime-like groups in some unique (up to
something silly, like ordering) way?

This question is not so obvious. Following Pólya’s dictum, we search for an easier version of the problem
that we can solve. Suppose, for example, that G were abelian. Michael pointed out that we then have a nice
parallel to prime decomposition in the integers: the Fundamental Theorem of Finite Abelian Groups.

Fundamental Theorem of Finite Abelian Groups. Given any finite abelian G, there exists a unique set (up
to labeling of its elements) of prime powers {pni

i : 1 ≤ i ≤ k} such that G ' Cpn1
1
× Cpn2

2
× · · · × Cpnk

k
.

Thus, any finite abelian group can be decomposed into a product of prime-power cyclic groups in a unique
way (up to the ordering). What about nonabelian groups? It turns out there’s a lovely theorem in this setting:

Theorem 3.1 (“Krull-Schmidt Theorem” – proved by Wedderburn in 1909). Any finite group G can be decom-
posed as

G ' P1 × P2 × · · · × Pn
where each Pi is an indecomposable group (in the sense that it cannot be expressed as the product of two
smaller groups). Furthermore, this decomposition is unique: any other such decomposition of G will yield the
same list of indecomposables, up to isomorphism and ordering.

This seems like the perfect analogy to unique factorization in Z. Unfortunately, Krull-Schmidt turns out to
not be a particularly useful theorem because we have no idea what indecomposable groups are like – we have
no nice characterization of them apart from the definition. In other words, decomposing complicated groups
into indecomposables doesn’t give us additional insight into the structure of the original group!

4. A DIFFERENT APPROACH TO UNIQUE FACTORIZATION: JORDAN-HÖLDER

From above we see that the most natural analogue of prime factorization in the context of finite groups –
Krull-Schmidt – isn’t so helpful. Is there a more useful analogue?



For inspiration, we search for an alternative approach to prime factorization in Z. One idea, inspired by our
work with towers of field extensions, is to set up a tower of divisors. Here’s how this works, using 60 as an
example. We start with a trivial tower:

60

1

Next we ‘refine’ this tower by introducing an intermediate divisor, e.g.

60

15

1

Now we refine again by introducing another intermediate divisor, e.g.

60

30

15

1

Note that it’s no longer possible to refine the top two extensions of our tower, since there are no intermediate
divisors. We can, however, refine the bottom extension a bit more:

60

30

15

3

1

2

2

5

3

There are no more intermediate divisors one could insert, so we say this is a ‘complete refinement’ of the
original trivial tower.

In order to save space, we’ll write these divisor towers horizontally, e.g. our completely refined tower from
above is

60 30 15 3 12 2 5 3

Note that this process of completely refining a tower of divisors is not unique. For example, we could have
arrived at a different complete refinement if we’d inserted the intermediate divisor 20 at the first stage:

60 1
1st refinement

60 20 1
continue...

60 20 4 2 13 5 2 2



There are other complete refinements we might have ended up at as well. However, some aspects of the
complete refinement are invariant, as Emily pointed out: the length of the completely refined chain is the
same no matter how we refine the original. Moreover, Franny noted that the list of degrees (i.e. the adjacent
quotients) we obtain is the same in any complete refinement. Indeed, this list is precisely the list of prime
factors of 60 (with multiplicity).

Having developed this alternative approach to the prime factorization of integers, we explore how to carry it
over to the setting of finite groups. The first thing we need is an analogue of divisor. What does it mean for one
group to divide another? This immediately brings to mind the concept of normal subgroup. Indeed, we have
the following analogy between whole numbers and groups:

Whole numbers Groups
d ≤ n H ≤ G
d | n H E G

d ≤ n =⇒ n/d is a number, H ≤ G =⇒ G/H is a set,
but not necessarily a whole number but not necessarily a subgroup
d | n =⇒ n/d is a whole number H E G =⇒ G/H is a subgroup

With this parallel in mind, we can now carry over the idea from integer factorization to the group setting. Given
a finite group G, we have the trivial chain of divisors:

G B {e}.
We can refine this chain by inserting intermediate normal subgroups. Eventually, we arrive at a complete
refinement of the original series. In the context of groups, such a maximal refinement has a name:

Definition. A composition series of a finite group G is a chain of the form

G = G0 B G1 B G2 B · · · B Gn = {e}
such that no refinements of this chain are possible. The composition factors of G are the quotients Gi/Gi+1.

As in the case of whole numbers, a group might have multiple composition series. Remarkably, though, the
list of composition factors is uniquely determined (up to isomorphism and ordering). This is the content of the
following result:

Theorem 4.1 (Jordan-Hölder). Given two composition series of a finite group G:
G = G0 B G1 B · · · B Gn = {e}
G = H0 B H1 B · · · B Hk = {e}.

Then n = k and there exists some permutation π ∈ Sn such that

Gi/Gi+1 ' Hπ(i)/Hπ(i)+1

for all i.

Intuitively, we think of the composition factors as the prime factors of G. What are these groups, though? Are
they simple to understand? We’ll explore this next time.
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