
GALOIS THEORY: LECTURE 21

LEO GOLDMAKHER

1. SIMPLE GROUPS AND THE JORDAN-HÖLDER THEOREM

Recall that at the end of last class we stated the Jordan-Hölder Theorem. Here’s the setup. Given any finite
nontrivial group G, we have a normal series G B {e}. We refine this normal series by inserting proper normal
subgroups in between G and {e} one at a time. Eventually we obtain a maximally refined normal series of the
form

G = G0 B G1 B G2 B · · · B Gn = {e},
where no more intermediate normal subgroups can be inserted. Any such maximally refined normal series is
called a composition series of G; the adjacent quotients Gi/Gi+1 are called the composition factors of G.

Jordan-Hölder Theorem (Jordan 1869-70, Hölder 1889). Fix any finite group G. Then every composition
series of G has the same length, and the list of composition factors is unique up to order and isomorphism.

What can we say about the composition factors of a given group? Writing a given composition factor in
the form Gi/Gi+1, we know by definition that there are no intermediate normal subgroups between Gi and
Gi+1. This implies that the quotient group Gi/Gi+1 has no normal subgroups. A group with this property has
a special name:

Definition. A group is called simple if and only if its only normal subgroups are itself and the trivial group.

Thus all the composition factors ofG are simple. According to our analogy between groups and whole numbers
from last time, we see that simple groups are the natural analogues of prime numbers, since their only proper
‘divisor’ is the trivial group {e}. Thus, Jordan-Hölder is completely parallel to unique factorization in the
whole numbers: just as every whole number can be decomposed into a unique list of prime factors, every finite
group can be decomposed into a unique list of simple composition factors. In fact, Jordan-Hölder is literally a
generalization of uniqueness of factorization in N; see problem 11.2.

There are some familiar examples of simple groups, e.g. the alternating groups An for all n ≥ 5, and all
cyclic groups of prime order. Remarkably, finite simple groups have been completely classified: every simple
group lies in one of 18 infinite families (two of which we listed above) or one of 26 exceptional (“sporadic”)
groups. This classification is the main advantage of Jordan-Hölder over Krull-Schmidt: rather than breaking
down G into some equally mysterious indecomposables, we decompose G into finite simple groups, which we
understand very well.

Unfortunately, unlike the case of factorization in Z, one cannot in general recover the group G from its
composition factors. In other words, given two groups N and H there sometimes exist non-isomorphic groups
G and G′ such that N is isomorphic to a normal subgroup of both G and G′, and G/N ' H ' G′/N . See
problem 11.2.

2. RADICAL EXTENSIONS

Early on this semester, we learned that the original motivation for Galois’ work was to prove the insolvability
of the quintic. The goal for the rest of today’s class is to sketch this proof. The main idea is transparent and
lovely, but there are a few technical complications that arise. We’ll postpone dealing with these details to next
class. Throughout, we’ll assume all fields have characteristic 0.
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Question 1. What does it mean for a number to be expressible in radicals? i.e. how do we formally define it?

What Galois realized is that any number expressible in radicals must live in a particularly nice type of field
extension of Q called a radical extension. For example, in which field does α :=

√
−7 + 3

√
2− 5
√
10 live? Of

course it lives in K := Q(α), but this doesn’t tell us anything new. Galois’ insight was that we can construct
the field K in simple stages by building a tower of simple extensions:

K := K2(
5
√
10)

K2 := K1(
√
−7 + 3

√
2)

K1 := K0(
3
√
2)

K0 := Q
Note that each intermediate field is a simple extension of the one right below it, and that a primitive element of
each extension is just a single radical applied to a single field element. This motivates the following concepts:

Definition. Any extension K(α1/n)/K where n ∈ N and α ∈ K is called a simple radical extension.

Definition. An extension L/K is a radical extension if and only if it can be broken down into a finite tower of
simple radical extensions.

Trevin noted that any simple radical extension must be algebraic. Indeed, any simple radical extension is finite,
hence (by Tower Law) so is any radical extension. But we know that every finite extension is algebraic.

Galois’ main insight was:

If a simple radical extension is Galois, then its Galois group is abelian. (1)

A secondary (but also important) insight was that if a polynomial has a root expressible in radicals, then all its
roots must live in some radical extension of Q. Taking these two insights on faith for now, we describe Galois’
proof of the insolvability of the quintic.

Suppose we have some polynomial f ∈ Q[x] with one root expressible in radicals. By Galois’ second
insight, all its roots live in some radical extension L/Q. Decomposing the radical extension into a tower of
simple radical extensions and applying the Galois correspondence yields the following picture:

L = Kn G0 = Gal(L/K0)

Kn−1 G1 = Gal(L/K1)

... ←→ ...

K1 Gn−1 = Gal(L/Kn−1)

K0 = Q Gn = {e}

simple radical extn→

simple radical extn→

simple radical extn→

simple radical extn→

Suppose all the simple extensions making up our tower are Galois. The Fundamental Theorem of Galois Theory
implies that

G0 B G1 B · · · B Gn−1 B Gn = {e},



and that
Gal(Kj+1/Kj) ' Gj/Gj+1

for each j. Moreover, Galois’ first insight (1) tells us that all the Gal(Kj+1/Kj) are abelian. In other words,
we deduce the existence of a normal series

Gal(f) = G0 B G1 B · · · B Gn−1 B Gn = {e}
such that Gj/Gj+1 is abelian for all j. In particular, if we can find some f ∈ Q[x] with Galois group which
doesn’t satisfy this property, the above argument shows that f cannot be solved in radicals!

The above argument is riddled with holes, unfortunately. Perhaps the most immediately glaring issue (pointed
out by Andrew) is that simple radical extensions need not be Galois, as our favorite counterexample Q( 3

√
2)/Q

demonstrates. This is consistent with Galois’ insight (1), but it does mean we have to think carefully about
when a simple radical extension is Galois.

A more serious flaw is that we cannot apply the Fundamental Theorem of Galois Theory unless we know that
the extension L/Q is Galois. More precisely, we know that the splitting field of f is Galois over Q (assuming f
is separable), but we don’t know whether this holds for the radical extension L containing the roots of f . Note
that even in the ideal case of a tower of simple radical extensions which are all Galois connecting Q to L, the
overall extension L/Q might not be Galois!1 (See problem 8.5.) Next class we’ll get around this by showing
that any radical extension of Q can be enlarged to a Galois radical extension. Combining this with a bit of
elbow grease will ultimately lead us to the following result:

Theorem 2.1 (Galois). Given a separable polynomial f ∈ Q[x]. If f is solvable in radicals, then all composi-
tion factors of Gal(f) are abelian.

Remark. Galois also proved that the converse holds. This boils down to proving the following: any finite
Galois extension K/Q such that all composition factors of Gal(K/Q) are abelian can be enlarged to a radical
extension of Q. After next class you will have all the tools to prove this!

3. INSOLVABILITY OF A SPECIFIC QUINTIC

We postpone the proof of Theorem 2.1 to next class. In the meantime, we illustrate the power of the theorem
by using it to prove the insolvability of a specific polynomial in radicals. Consider the quintic

f(x) := x5 − 4x− 2.

Note the following properties of f :
(1) it is irreducible (by Eisenstein),
(2) it is separable (since we’re in characteristic 0 and it’s irreducible), and
(3) it has precisely 3 real roots and 2 imaginary roots.

Claim. The roots of f cannot be expressed using only radicals and field operations.

Proof. We break the proof into three steps.
I. Gal(f) ' S5.

First, observe that Gal(f) must contain an element of order 5; see problem 11.4(a). Next, since
f has precisely three real roots and two complex roots, Gal(f) must contain a transposition;
see problem 11.4(b). It is important to note that if f has more than two complex roots, then
Gal(f) might not contain a transposition!

II. Determine the composition factors of S5.
First observe that the alternating group A5 C S5. Furthermore, it turns out that A5 is simple
(see problem 11.1). Combining this with the fact that |S5/A5| = 2, we deduce that

S5 B A5 B {e}
is a composition series for S5, with composition factors Z/2Z and A5.

1This is essentially the error in Ruffini’s work on the quintic.



III. Conclude by the Jordan-Hölder Theorem.
We see that the composition factors of Gal(f) ' S5 aren’t all abelian (since A5 isn’t). Theo-
rem 2.1 implies that f isn’t solvable in radicals. �

Remark. This proof works for any polynomial with Galois group isomorphic to Sn for any n ≥ 5, since it can
be shown that An is nonabelian and simple for all n ≥ 5.

4. PROOF OF GALOIS’ MAIN INSIGHT

Our next result shows that if the ground field in a simple radical extension happens to contain an appropriate
root of unity, then the extension is Galois and cyclic; note that an extension is called cyclic (or abelian or...) iff
its Galois group is cyclic (or abelian or...). This justifies Galois’ insight (1) under a suitable hypothesis.

Lemma 4.1. Suppose α, ζn ∈ K. Then K(α1/n)/K is Galois and cyclic.

Proof. Note that K(α1/n)/K is a splitting field of xn − α over K, which is a separable polynomial. (We can
write down all its solutions explicitly.) It follows that K(α1/n)/K is Galois. Set G := Gal(K(α1/n)/K).

Now, pick any σ ∈ G. Since σ fixes K, we see that σ is completely determined by where it sends α1/n. We
know that σ(α) is a root of xn − α ∈ K[x], i.e. σ(α) = ζknα for some k ∈ Z/nZ. This gives us a natural map
G → Z/nZ defined by σ 7→ k. It’s an exercise to check that this map is an injective homomorphism. Thus G
embeds inside Z/nZ. Since Z/nZ is cyclic, this implies that G must be cyclic. �
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