
GALOIS THEORY: LECTURE 22

LEO GOLDMAKHER

1. RECAP OF PREVIOUS LECTURE

Recall that last class we sketched a proof for the insolvability of the quintic. We argued that any quintic
polynomial f ∈ Q[x] with Gal(f) ' S5 cannot be solved in radicals. (We considered the specific example
f(x) = x5 − 4x− 2, but the argument works for any f with Gal(f) = S5.) At the heart of the argument is the
following result due to Galois:

Galois’ solvability criterion. Given a separable polynomial f ∈ Q[x]. Then f is solvable in radicals if and
only if all composition factors of Gal(f) are abelian.

With this in hand, the rest of the argument isn’t hard. Indeed, the composition series for S5 is S5 B A5 B {e},
because A5 is simple and has index 2 in S5. Thus, the composition factors of S5 are A5 and Z/2Z. Since A5

isn’t abelian, Galois’ solvability criterion implies that the roots of f do not live in any radical extension of Q.
(Note that we only used the forward implication of Galois’ criterion in this argument.)

Although we sketched an argument for the (forward direction of the) Galois solvability criterion in Lecture
21 (see Theorem 2.1 there), it was not a rigorous proof. Our goal for today is to prove the theorem. The first
order of business is to revise the definition of a simple radical extension that we gave last time; although the
adjustment seems minor, it is a crucial move.

Definition. Any extension of the form K(β)/K with βm ∈ K for some positive integer m is called a simple
radical extension.

Remark. Last class, for L/K to be a simple radical extension we required that L = K(α1/n) for n ∈ N and
α ∈ K. Our updated definition is less restrictive, because we no longer distinguish any of the roots of xn − α.
For example, denoting the principal nth root of unity by ζn, we now consider Q(ζn)/Q to be a simple radical
extension (our more restricted definition from last class wouldn’t permit this).

Our definition of radical extension remains unchanged:

Definition. L/K is a radical extension if it can be decomposed into a finite tower of simple radical extensions.

Recall the raison d’être of this concept: we wish to say that a number α ∈ C is expressible in terms of radicals
iff α lives inside of some radical extension of Q. The main effect of changing our definition of simple radical
extension is that, under the new definition, we allow arbitrary roots of unity to be used in a radical expression.
(Under the earlier definition, i =

√
−1 was allowed, but the cube root of unity ω wasn’t.)

2. INGREDIENTS

Before rigorously proving Galois’ solvability criterion, we need to assemble a few ingredients. The first is a
basic result from group theory.

Third Isomorphism Theorem. Given G D H , and suppose G ≥ N ≥ H . Then
(1) N D H and G/H ≥ N/H .

If, moreover, G D N D H , then
(2) G/H D N/H , and G/N ' (G/H)/(N/H).
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Note that this is reminiscent of field extensions: the first assertion is parallel to the result that inserting any
intermediate field into a Galois extension makes the top extension Galois, and the second assertion is parallel
to part (4) of the FTGT.

A second important ingredient is a result we proved at the end of Lecture 21:

Lemma 2.1. Given K a finite extension of Q. If αm, ζm ∈ K then Gal(K(α)/K) is cyclic.

Recall from our sketch of Galois’ solvability criterion that, given a radical extension L/Q, we’d like to
build a tower of abelian extensions between Q and L. The above lemma allows us to accomplish this under
the assumption that the intermediate fields all contain an appropriate root of unity. How do we enforce this
condition? Simple: we start our tower by adjoining some large root of unity to Q, thereby ensuring its existence
thenceforth. But now we need to check that we haven’t ruined our argument in the process. More precisely, we
must verify that

(1) Q(ζn)/Q is a simple radical extension, and
(2) Q(ζn)/Q is abelian.

The former holds thanks to our new, more permissive definition of simple radical extension, and you will prove
the latter in your assignment (see problem 11.3). To be able to refer to it, we state the result formally here:

Lemma 2.2. For any n ∈ N, the Galois group Gal(Q(ζn)/Q) is abelian.

We now have all the tools we need to prove Galois’ solvability criterion, which we carry out in the next
section. But first, we discuss a bit of related history. Any group all of whose composition factors are abelian
is called solvable; thus, Galois’ criterion asserts that a separable f ∈ Q[x] is solvable in radicals if and only if
Gal(f) is solvable. In other words, we’ve translated the problem of determining the solvability of polynomials
into a problem about determining the solvability of groups. This inspires a natural question: is it possible to
classify all solvable groups? Or at least to give an easy sufficient condition for a group to be solvable?

As a warm up, we prove the following:

Proposition 2.3. If |G| = pm for some prime p, then G is solvable.

Proof. By Sylow’s theorem, there exist subgroups G = G0 ≥ G1 ≥ G2 ≥ · · · ≥ Gm = {e} with |Gk| = pm−k.
It follows that |Gi/Gi+1| = p for all i. It turns out (see lemma below) that this forces Gi+1 C Gi, whence
Gi/Gi+1 ' Zp for all i. This immediately implies that G is solvable. �

Lemma 2.4. Suppose p is the smallest prime factor of a group G, and that |G/H| = p for some H ≤ G. Then
H C G.

Remark. The hypothesis that p be the smallest prime factor can be weakened, but it cannot be removed en-
tirely. For a proof of the lemma (as well as a nice generalization to subgroups of composite index), see the
supplementary document ‘Subgroups of Prime Index’.

Can Proposition 2.3 be strengthened? For example, what can we say about groups of order other than a
prime power? The first serious work on this was completed by William Burnside, an applied mathematician
who became one of the pioneers in the theory of group representations.

Theorem 2.5 (Burnside, 1904). If |G| = pmqn for some primes p and q, then G is solvable.

Seven years later, Burnside conjectured that every finite nonabelian simple group must have even order (the
connection to solvability being that a solvable nonabelian group cannot be simple). This conjecture inspired a
lot of research, including one of the greatest (and most difficult) accomplishments in abstract algebra:

Theorem 2.6 (Feit-Thompson, 1962). If |G| is odd, then G is solvable.

Note that this implies Burnside’s conjecture.



3. PROOF OF GALOIS’ SOLVABILITY CRITERION

Our goal in this section will be to prove the forward direction of Galois’ solvability criterion. In other words,
we’ll prove

Theorem 3.1. If f ∈ Q[x] is separable and solvable in radicals, then Gal(f) is a solvable group.

Remark. Although we won’t prove it here, once you understand the proof of the forward direction of Galois’
criterion you will have all the tools for handling the reverse direction.

Although the underlying idea isn’t so complicated, the formal proof is clouded by technical details. To help
the reader keep track of this, I split the proof into several broad steps.

Step 1. Enlarge the splitting extension to one which is simultaneously Galois and radical.

Recall from Lecture 21 that our proof hinges on two ideas: (i) all the roots of f live inside some
extension L/Q which is Galois and radical, hence can be decomposed into a tower of simple radical
extensions; and (ii) the Galois group of each simple radical extension is abelian. From here, one uses
the Fundamental Theorem of Galois Theory to translate the problem into group theory, and then some
more group theory produces the desired result.

But what is this field L? A first guess might be that L is the splitting field of f over Q, but it
turns out that this doesn’t work. To see this, let K denote the splitting field of f over Q. Since f is
separable, K/Q is Galois – so far, so good. Moreover, we know (see problem 11.6) that all roots of
f are expressible in radicals. It therefore comes as a bit of a shock that K/Q might not be a radical
extension! (We’ll see an example of this strange behavior next lecture.)

Thus, we can’t apply our argument to the splitting field K/Q. That’s OK, though, because we know
that all the roots of f must live in some radical extension F/Q. Moreover, since K is the splitting field
of f , we deduce that we have a tower F/K/Q. This looks promising, but there’s a fly in the ointment:
K/Q is Galois, but F/Q might not be! This is bad for us, because it prevents us from applying the
FTGT as our argument requires.

Fortunately, we know (see problem 9.4) that any finite extension of Q can be enlarged to a finite
Galois extension. This allows us to find some finite Galois extension L/Q such that L/F . The problem
is that it’s not at all obvious that this larger field L is still a radical extension of Q! Fortunately, it turns
out that it is. In other words, L/Q is simultaneously radical and Galois, which puts us in the position
to proceed with our argument. Without further ado, we state and prove the necessary result.

Lemma 3.2. Any radical extension F/Q can be enlarged to an extension L/Q that is simultaneously
radical and Galois.

Proof. Given F/Q a radical extension, we know (by definition) that it can be decomposed into a finite
tower of simple radical extensions. In other words, we have a sequence of field extensions

Q = F0 ( F1 ( F2 ( · · · ( Fn = F

such that each extension Fk/Fk−1 is a simple radical extension. In other words, for each k there exists
some number αk such that Fk = Fk−1(αk) and some positive power of αk lives in Fk−1.

Writing F = Q(α1, α2, . . . , αn) we enlarge F/Q to a Galois extension in the usual way, by letting
L be the splitting field of the least common multiple of the minimal polynomials {mαi

: 1 ≤ i ≤ n}.
Note that this least common multiple must be separable, by the Fundamental Lemma and problem 9.3.
It follows that L/Q is Galois. We claim that L/Q is a radical extension.

To prove this, we’ll show that adjoining Galois conjugates one at a time creates a sequence of simple
radical extensions. To do this, it’s helpful to introduce some notation. Set G := Gal(L/Q) and define
a tower of fields recursively by

F̃0 := Q and F̃k := F̃k−1({σ(αk) : σ ∈ G}).



Note that F̃0 = Q and F̃n = L, so to prove that L/Q is radical it suffices to show that F̃k/F̃k−1 is a
radical extension for all k. We’ll require the following tool:

Lemma 3.3. For all σ ∈ G, σ(Fk) ⊆ F̃k.

With this in hand, we conclude the proof of Lemma 3.2. Then we’ll go back and prove Lemma 3.3.
Pick σ ∈ G. There exists some m ∈ N such that αmi ∈ Fi−1. It follows that

σ(αi)
m = σ(αmi ) ∈ σ(Fi−1) ⊆ F̃i−1.

In other words, F̃i−1

(
σ(αi)

)
/F̃i−1 is a simple radical extension for any σ ∈ G. Adjoining all the Galois

conjugates of αi one at a time therefore produces a sequence of simple radical extensions from F̃i−1 to
F̃i. This shows that F̃i/F̃i−1 is radical for all i, whence L/Q must also be radical. �
One step in the proof above remains unresolved: we need to prove Lemma 3.3.
Proof of Lemma 3.3. We proceed by induction. Pick σ ∈ G. The base case is purely notational:

σ(F0) = σ(Q) = Q = F̃0.

Now we consider the inductive step:

σ(Fk) = σ
(
Fk−1(αk)

)
= σ

(
Fk−1[αk]

)
= σ

({
f(αk) : f ∈ Fk−1[x]

})
⊆ σ(Fk−1)

(
σ(αk)

)
⊆ F̃k−1

(
σ(αk)

)
⊆ F̃k. �

Step 2. The composition factors of Gal(L/Q) are all abelian.

Since L is radical, we can decompose it into a sequence of simple radical extensions

L = Ln ) Ln−1 ) · · · ) L1 ) L0 = Q
where for each k there exists βk ∈ C and dk ∈ N such that Lk = Lk−1(βk) and βdkk ∈ Lk−1. We now
wish to apply Lemma 2.1 to the intermediate extensions Lk/Lk−1, but we can’t because these might
not contain the appropriate roots of unity! So, we employ a trick. Set N := LCM(d2, d3, . . . , dn).

L = Ln−1(βn)

Ln−1 = Ln−2(βn−1)

...

L3 = L2(β3)

L2 = Q(β2)

Q

adjoin roots of unity!

L = Ln = Ln−1(βn)

Ln−1 = Ln−2(βn−1)

...

L2 = L1(β2)

L1 = Q(ζN)

L0 = Q



By adjoining ζN to Q as our bottom-most extension, we guarantee that all each field Li will contain
the root of unity ζdi , which puts us in the position to apply Lemma 2.1. We thus deduce that Li/Li−1 is
Galois and abelian for all i ≥ 2. And Lemma 2.2 asserts that L1/L0 is also Galois and abelian. (Note:
our restriction that a radical extension consists of finitely many simple radical extensions is crucial in
this step – otherwise, we might not have been able to construct the appropriate root of unity ζN !)

Now since L/Q is Galois, we can employ the FTGT:

L = Ln G0 = Gal(L/Q)

Ln−1 G1 = Gal(L/L1)

Ln−2 G2 = Gal(L/L2)

...
...

L1 Gn−1 = Gal(L/Ln−1)

L0 = Q Gn = {e}

Note that the Galois groups represented are
not coming from the extensions Li/Li−1

discussed above – instead, they are all of the
form Gal(L/Li).

However, we also know that Li/Li−1 is Ga-
lois for each i. The FTGT then implies that
corresponding group extension is normal:

Gal(L/Li) C Gal(L/Li−1).

Actually, the FTGT says more:

Gal(Li/Li−1) ' Gi−1/Gi.

In summary, we’ve created a normal chain

Gal(L/Q) B G1 B · · · B Gn−1 B {e} (1)

where each adjacent quotient is abelian. Now (1) is not necessarily a composition series – there may
be intermediate groups. However, as Franny observed, any refinement of this series preserves abelian-
ness. Indeed, suppose G B H with G/H abelian, and that N is some intermediate normal subgroup:
G B N B H . Then the third isomorphism theorem produces two conclusions: that N/H C G/H ,
and that G/N ' (G/H)/(N/H). The former implies that N/H must be abelian; the latter implies that
G/N must be as well.

Thus, we see that in any refinement of our normal series (1) all adjacent quotients must be abelian.
It follows that all the composition factors of Gal(L/Q) must be abelian, as claimed.

Step 3. The composition factors of Gal(f) are all abelian.

Recall that the splitting field of f over Q isK, not L. Thus we still have a bit more work to do: we’ve
proved that all the composition factors of Gal(L/Q) are abelian, and now we wish to do the same for
the group Gal(K/Q).

Since K is an intermediate field of the extension L/Q, the FTGT produces the following picture:
L G

K H

Q {e}

Here G := Gal(L/Q) and H := Gal(L/K).



Moreover, we know that K/Q is Galois, so the FTGT tells us that H C G and that

Gal(f) = Gal(K/Q) ' G/H.

This allows us to remove all vestiges of field theory from the problem and rephrase it purely in terms
of group theory:

What we know What we claim
All composition factors of G are abelian All composition factors of G/H are abelian

G B H B {e}

Consider a complete refinement of the normal series G B H B {e}; it takes the form

G = H0 B H1 B · · · B Hm = H B · · ·
By Jordan-Hölder, we obtain precisely the same list of composition factors from this composition series
as we did in Step 2. In particular, we deduce that Hi−1/Hi is simple and abelian for all i ≤ m. The
third isomorphism theorem implies that for any i ≤ m we have

Hi−1 B Hi B H,

and moreover that (Hi−1/H) B (Hi/H) and

(Hi−1/H)/(Hi/H) ' Hi−1/Hi,

which we know from above is simple and abelian. We’ve therefore produced a composition series

(G/H) = (H0/H) B (H1/H) B · · · B (Hm/H) = {e}
whose composition factors are all abelian. This completes the proof! Q.E.F.D.

I invite the reader to think about how to prove the converse direction of Galois’ solvability criterion. You
have all the necessary tools!
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