GALOIS THEORY: LECTURE 23

LEO GOLDMAKHER

1. ARE SPLITTING FIELDS OF SOLVABLE POLYNOMIALS RADICAL?

Recall the first step in the proof of Theorem 3.1 from Lecture 22: given a solvable, separable polynomial $f \in \mathbb{Q}[x]$, we enlarge its splitting field K/\mathbb{Q} to a radical Galois extension of \mathbb{Q} . It's tempting to argue (as Ben did) that this step is unnecessary. After all, we know that K/\mathbb{Q} must be Galois, and by adjoining all the roots of f to \mathbb{Q} one at a time, we create a sequence of radical extensions connecting \mathbb{Q} to K... which is to say, K/\mathbb{Q} is radical. But something must be wrong with this argument, or else we wouldn't have gone through all the trouble we did in Lecture 22 to generate a Galois radical extension $L/\mathbb{Q}!$ Formally:

Question 1 (Ben). Must splitting fields of solvable polynomials radical? More precisely, given a separable $f \in \mathbb{Q}[x]$ whose roots are all expressible in radicals, is it possible for its splitting field K to not be a radical extension of \mathbb{Q} ?

To sort out this puzzling issue, we begin with the following observation.

Proposition 1.1. If K/\mathbb{Q} is normal and of degree 3, then it is not radical.

Proof. Suppose K/\mathbb{Q} were radical. Then Tower Law implies K/\mathbb{Q} must be a *simple* radical extension. This is equivalent to writing $K = \mathbb{Q}(\alpha)$ with $\alpha^3 \in \mathbb{Q}$. Moreover, the minimal polynomial of α has degree 3, whence the minimal polynomial of α must be $x^3 - \alpha^3$. Since K/\mathbb{Q} is normal and contains a root of the irreducible polynomial $x^3 - \alpha^3$, the field extension K/\mathbb{Q} contains *all* the roots of $x^3 - \alpha^3$. It follows that ω (the cube root of unity) lives in K. But this contradicts Tower Law, since $K/\mathbb{Q}(\omega)/\mathbb{Q}$ and $[\mathbb{Q}(\omega) : \mathbb{Q}] = 2$. Thus, K/\mathbb{Q} cannot be a radical extension.

Remark. Emily noted that this proposition can be generalized to normal extensions of arbitrary (odd) prime degree.

Corollary 1.2. The polynomial $f(x) = x^3 - 3x - 1$ has all radical roots and its splitting field K is not a radical extension of \mathbb{Q} .

Proof. First recall that the cubic formula expresses all three roots of f as a combination of the coefficients of f, the four field operations, square roots, cube roots, and roots of unity. Since the coefficients of f are rational, it follows that all its roots are expressible in radicals. It remains to show that K/\mathbb{Q} isn't radical.

To do this, we'll employ Proposition 1.1. We have to show that K/\mathbb{Q} satisfies the hypotheses of the proposition. First off, note that f is irreducible over \mathbb{Q} (for example by reduction in \mathbb{F}_2), which implies that f is separable. We deduce that K/\mathbb{Q} is Galois, whence

 $[K:\mathbb{Q}] = |\operatorname{Gal}(f)|$ and K/\mathbb{Q} is normal.

Finally, it's a good exercise to prove that

$$\operatorname{Gal}(f) \simeq \mathbb{Z}_3.$$

Putting all this together, we see that K/\mathbb{Q} satisfies the hypotheses of Proposition 1.1, hence cannot be a radical extension.

Exercise 1. In the first paragraph of this section we gave an argument that K/\mathbb{Q} should be radical. In view of Corollary 1.2, that argument cannot be correct. What's wrong with it?

Date: May 10, 2018.

Based on notes by Jonah Greenberg.

2. Computing Gal(f) without explicitly knowing its roots

Before Galois' work, mathematicians expected a solvability criterion (if not an outright formula) in terms of the *coefficients* of a polynomial $f \in \mathbb{Q}[x]$. Instead, Galois gave a criterion for solvability in terms of $\operatorname{Gal}(f)$. At first glance this seems to be begging the question, since $\operatorname{Gal}(f)$ is itself measuring the symmetries among the roots, which implies that we already need to know something about the roots! What Galois realized is that one can determine a good deal about $\operatorname{Gal}(f)$ without knowing the roots – it suffices to figure out a bunch of relations *among* the roots. The more relations we know, the more information we can glean about $\operatorname{Gal}(f)$. The goal of this section is to illustrate how we can determine the Galois group of a given polynomial without already knowing its roots.

Let

$$f(x) := x^4 + 4x^2 + 2$$

and set G := Gal(f). Recall that any element of G permutes the roots of f, whence

 $G \leq S_4.$

The game we're going to play is to determine as many relations among the roots as possible; each relation will eliminate some subgroups of S_4 . If we eliminate all but one subgroup, G must be whatever's left! Let K be a splitting field of f over \mathbb{Q} .

(i) The roots come in pairs.

Observe that all powers of x appearing in f are even. Right away this imposes a symmetry on the roots of f: if α is a root of f, then so is $-\alpha$. Thus, we can write the roots of f as $\{\pm \alpha, \pm \beta\}$. For ease of notation, let's make the following associations:

 $1 \leftrightarrow \alpha \qquad \qquad 2 \leftrightarrow -\alpha \qquad \qquad 3 \leftrightarrow \beta \qquad \qquad 4 \leftrightarrow -\beta$

Thus, for example, we can notate the transposition exchanging α and $-\beta$ as (1.4).

(ii) We have $G \leq D_8$, the dihedral group of order 8.¹

Pick any $\sigma \in G$. Since $\sigma(-\alpha) = -\sigma(\alpha)$, we see that $\sigma(\{\pm \alpha\}) = \{\pm \alpha\}$ or $\{\pm \beta\}$. In particular, this imposes some limitations on σ :

$$\begin{aligned} \sigma \not\in \{(1\ 3), (1\ 4), (2\ 3), (2\ 4), \\ (1\ 2\ 3), (1\ 3\ 2), (1\ 2\ 4), (1\ 4\ 2), (1\ 3\ 4), (1\ 4\ 3), (2\ 3\ 4), (2\ 4\ 3), \\ (1\ 2\ 3\ 4), (1\ 2\ 4\ 3), (1\ 3\ 4\ 2), (1\ 4\ 3\ 2) \} \end{aligned}$$

Since $\sigma \in G$ was arbitrary, we deduce that

$$G \subseteq \{(\), (1\ 2), (3\ 4), (1\ 2)(3\ 4), (1\ 3)(2\ 4), (1\ 4)(2\ 3), (1\ 3\ 2\ 4), (1\ 4\ 2\ 3)\} \\ = \{e, \rho, \rho^2, \rho^3, \phi, \rho\phi, \rho^2\phi, \rho^3\phi\}$$

where $e := (), \rho := (1 \ 3 \ 2 \ 4)$, and $\phi := (1 \ 2)$. Note that $\rho^4 = e = \phi^2$ and $\phi \rho = \rho^3 \phi$; it follows that $G \le D_8$.

(iii) We have $4 \mid |G|$.

Eisenstein implies that f is irreducible. It follows that f is the minimal polynomial of α , whence

 $[\mathbb{Q}(\alpha):\mathbb{Q}]=4.$

Since $Q(\alpha)$ is an intermediate field of the extension K/\mathbb{Q} , Tower Law yields

$$4 \mid [K : \mathbb{Q}] = |G|.$$

(iv) G must be isomorphic to D_8 , \mathbb{Z}_4 , or $\mathbb{Z}_2 \times \mathbb{Z}_2$.

¹We're cheating a bit here: G is a subgroup of an *isomorphic copy* of D_8 sitting inside S_4 .

Combining the previous two steps we see that

|G| = 4 or 8.

There are precisely four subgroups of D_8 of order 4 or 8:

$$\underbrace{\{e,\rho,\rho^2,\rho^3,\phi,\rho\phi,\rho^2\phi,\rho^3\phi\}}_{D_8} \underbrace{\{e,\rho,\rho^2,\rho^3\}}_{H_1} \underbrace{\{e,\rho^2,\phi,\rho^2\phi\}}_{H_2} \underbrace{\{e,\rho\phi,\phi\rho,\rho^2\}}_{H_3}.$$

Our hope is to rule out three of these.

(v) $G \neq H_3$

Since the roots are $\pm \alpha, \pm \beta$, we have

$$f(x) = x^4 + 4x^2 + 2 = (x^2 - \alpha^2)(x^2 - \beta^2).$$

This implies

$$\alpha^2+\beta^2=-4 \qquad \text{ and } \qquad \alpha^2\beta^2=2$$

From the second observation, we deduce that $\alpha\beta \notin \mathbb{Q}$. On the other hand we know $K^G = \mathbb{Q}$. It follows that $\alpha\beta$ cannot be fixed by all of G. Since $\alpha\beta$ is fixed by all of H_3 (a straightforward verification), we deduce that $G \neq H_3$.

(vi) $G \neq H_2$

From above we know that $\alpha^2 + \beta^2 = -4$ and $\alpha^2 \beta^2 = 2$. It follows that $(\alpha^2 - \beta^2)^2 = (\alpha^2 + \beta^2)^2 - 4\alpha^2 \beta^2 = 8$.

Thus $\alpha^2 - \beta^2 = 2\sqrt{2}$, and we deduce that $\alpha^2 = -2 + \sqrt{2} \notin \mathbb{Q}$. As before, this means α^2 isn't fixed by all of G. On the other hand, α^2 is fixed by all of H_2 (a straightforward verification). This shows that $G \neq H_2$.

(vii) $G \neq D_8$

In our previous two arguments, we produced some combination of the roots which was irrational, hence couldn't be fixed by all of G. Now we take a different tack, producing a combination of the roots which is rational and therefore *must* be fixed by all of G.

Observe that

$$\sigma(\alpha^3\beta - \alpha\beta^3)^2 = \sigma(\alpha\beta)^2\sigma(\alpha^2 - \beta^2)^2 = 16$$

by our work above. It follows that

$$\sigma(\alpha^3\beta - \alpha\beta^3) = \pm 4.$$

Since $\sigma \in \operatorname{Aut}(K/\mathbb{Q})$, we deduce

$$\alpha^3\beta - \alpha\beta^3 = \pm 4,$$

whence $\alpha^3\beta - \alpha\beta^3$ is fixed by all of G. However, it's straightforward to verify that $\alpha^3\beta - \alpha\beta^3$ is *not* fixed by $\rho\phi$. Thus G cannot be D_8 .

(viii) By process of elimination, we conclude that

$$\operatorname{Gal}(f) = \{e, \rho, \rho^2, \rho^3\} \simeq \mathbb{Z}_4$$

Remark. Since Gal(f) is abelian, we deduce that f is solvable. Of course for this particular f we could have found the roots directly, but the point of the exercise is that we don't need to – with a bit of cleverness we can make deductions directly from the coefficients of f about relations between the roots, which can be combined to pinpoint the Galois group of f.