
GALOIS THEORY: LECTURE 23

LEO GOLDMAKHER

1. ARE SPLITTING FIELDS OF SOLVABLE POLYNOMIALS RADICAL?

Recall the first step in the proof of Theorem 3.1 from Lecture 22: given a solvable, separable polynomial
f ∈ Q[x], we enlarge its splitting field K/Q to a radical Galois extension of Q. It’s tempting to argue (as Ben
did) that this step is unnecessary. After all, we know that K/Q must be Galois, and by adjoining all the roots
of f to Q one at a time, we create a sequence of radical extensions connecting Q to K... which is to say, K/Q
is radical. But something must be wrong with this argument, or else we wouldn’t have gone through all the
trouble we did in Lecture 22 to generate a Galois radical extension L/Q! Formally:

Question 1 (Ben). Must splitting fields of solvable polynomials radical? More precisely, given a separable
f ∈ Q[x] whose roots are all expressible in radicals, is it possible for its splitting field K to not be a radical
extension of Q?

To sort out this puzzling issue, we begin with the following observation.

Proposition 1.1. If K/Q is normal and of degree 3, then it is not radical.

Proof. Suppose K/Q were radical. Then Tower Law implies K/Q must be a simple radical extension. This is
equivalent to writing K = Q(α) with α3 ∈ Q. Moreover, the minimal polynomial of α has degree 3, whence
the minimal polynomial of α must be x3 − α3. Since K/Q is normal and contains a root of the irreducible
polynomial x3 − α3, the field extension K/Q contains all the roots of x3 − α3. It follows that ω (the cube
root of unity) lives in K. But this contradicts Tower Law, since K/Q(ω)/Q and [Q(ω) : Q] = 2. Thus, K/Q
cannot be a radical extension. �

Remark. Emily noted that this proposition can be generalized to normal extensions of arbitrary (odd) prime
degree.

Corollary 1.2. The polynomial f(x) = x3−3x−1 has all radical roots and its splitting fieldK is not a radical
extension of Q.

Proof. First recall that the cubic formula expresses all three roots of f as a combination of the coefficients of
f , the four field operations, square roots, cube roots, and roots of unity. Since the coefficients of f are rational,
it follows that all its roots are expressible in radicals. It remains to show that K/Q isn’t radical.

To do this, we’ll employ Proposition 1.1. We have to show that K/Q satisfies the hypotheses of the propo-
sition. First off, note that f is irreducible over Q (for example by reduction in F2), which implies that f is
separable. We deduce that K/Q is Galois, whence

[K : Q] = |Gal(f)| and K/Q is normal.

Finally, it’s a good exercise to prove that
Gal(f) ' Z3.

Putting all this together, we see that K/Q satisfies the hypotheses of Proposition 1.1, hence cannot be a radical
extension. �

Exercise 1. In the first paragraph of this section we gave an argument that K/Q should be radical. In view of
Corollary 1.2, that argument cannot be correct. What’s wrong with it?

Date: May 10, 2018.
Based on notes by Jonah Greenberg.



2. COMPUTING Gal(f) WITHOUT EXPLICITLY KNOWING ITS ROOTS

Before Galois’ work, mathematicians expected a solvability criterion (if not an outright formula) in terms of
the coefficients of a polynomial f ∈ Q[x]. Instead, Galois gave a criterion for solvability in terms of Gal(f).
At first glance this seems to be begging the question, since Gal(f) is itself measuring the symmetries among
the roots, which implies that we already need to know something about the roots! What Galois realized is
that one can determine a good deal about Gal(f) without knowing the roots – it suffices to figure out a bunch
of relations among the roots. The more relations we know, the more information we can glean about Gal(f).
The goal of this section is to illustrate how we can determine the Galois group of a given polynomial without
already knowing its roots.

Let
f(x) := x4 + 4x2 + 2

and set G := Gal(f). Recall that any element of G permutes the roots of f , whence

G ≤ S4.

The game we’re going to play is to determine as many relations among the roots as possible; each relation will
eliminate some subgroups of S4. If we eliminate all but one subgroup, G must be whatever’s left!

Let K be a splitting field of f over Q.
(i) The roots come in pairs.

Observe that all powers of x appearing in f are even. Right away this imposes a symmetry
on the roots of f : if α is a root of f , then so is −α. Thus, we can write the roots of f as
{±α,±β}. For ease of notation, let’s make the following associations:

1↔ α 2↔ −α 3↔ β 4↔ −β
Thus, for example, we can notate the transposition exchanging α and −β as (1 4).

(ii) We have G ≤ D8, the dihedral group of order 8.1

Pick any σ ∈ G. Since σ(−α) = −σ(α), we see that σ({±α}) = {±α} or {±β}. In
particular, this imposes some limitations on σ:

σ 6∈ {(1 3), (1 4), (2 3), (2 4),
(1 2 3), (1 3 2), (1 2 4), (1 4 2), (1 3 4), (1 4 3), (2 3 4), (2 4 3),

(1 2 3 4), (1 2 4 3), (1 3 4 2), (1 4 3 2)}
Since σ ∈ G was arbitrary, we deduce that

G ⊆ {( ), (1 2), (3 4), (1 2)(3 4), (1 3)(2 4), (1 4)(2 3), (1 3 2 4), (1 4 2 3)}
= {e, ρ, ρ2, ρ3, φ, ρφ, ρ2φ, ρ3φ}

where e := ( ), ρ := (1 3 2 4), and φ := (1 2). Note that ρ4 = e = φ2 and φρ = ρ3φ; it
follows that G ≤ D8.

(iii) We have 4
∣∣ |G|.

Eisenstein implies that f is irreducible. It follows that f is the minimal polynomial of α,
whence

[Q(α) : Q] = 4.

Since Q(α) is an intermediate field of the extension K/Q, Tower Law yields

4
∣∣ [K : Q] = |G|.

(iv) G must be isomorphic to D8, Z4, or Z2 × Z2.

1We’re cheating a bit here: G is a subgroup of an isomorphic copy of D8 sitting inside S4.



Combining the previous two steps we see that

|G| = 4 or 8.

There are precisely four subgroups of D8 of order 4 or 8:

{e, ρ, ρ2, ρ3, φ, ρφ, ρ2φ, ρ3φ}︸ ︷︷ ︸
D8

{e, ρ, ρ2, ρ3}︸ ︷︷ ︸
H1

{e, ρ2, φ, ρ2φ}︸ ︷︷ ︸
H2

{e, ρφ, φρ, ρ2}︸ ︷︷ ︸
H3

.

Our hope is to rule out three of these.

(v) G 6= H3

Since the roots are ±α,±β, we have

f(x) = x4 + 4x2 + 2 = (x2 − α2)(x2 − β2).

This implies
α2 + β2 = −4 and α2β2 = 2.

From the second observation, we deduce that αβ 6∈ Q. On the other hand we know KG = Q.
It follows that αβ cannot be fixed by all ofG. Since αβ is fixed by all ofH3 (a straightforward
verification), we deduce that G 6= H3.

(vi) G 6= H2

From above we know that α2 + β2 = −4 and α2β2 = 2. It follows that

(α2 − β2)2 = (α2 + β2)2 − 4α2β2 = 8.

Thus α2−β2 = 2
√
2, and we deduce that α2 = −2+

√
2 6∈ Q. As before, this means α2 isn’t

fixed by all of G. On the other hand, α2 is fixed by all of H2 (a straightforward verification).
This shows that G 6= H2.

(vii) G 6= D8

In our previous two arguments, we produced some combination of the roots which was ir-
rational, hence couldn’t be fixed by all of G. Now we take a different tack, producing a
combination of the roots which is rational and therefore must be fixed by all of G.

Observe that
σ(α3β − αβ3)2 = σ(αβ)2σ(α2 − β2)2 = 16

by our work above. It follows that

σ(α3β − αβ3) = ±4.
Since σ ∈ Aut(K/Q), we deduce

α3β − αβ3 = ±4,
whence α3β−αβ3 is fixed by all of G. However, it’s straightforward to verify that α3β−αβ3

is not fixed by ρφ. Thus G cannot be D8.

(viii) By process of elimination, we conclude that

Gal(f) = {e, ρ, ρ2, ρ3} ' Z4.

Remark. Since Gal(f) is abelian, we deduce that f is solvable. Of course for this particular f we could have
found the roots directly, but the point of the exercise is that we don’t need to – with a bit of cleverness we can
make deductions directly from the coefficients of f about relations between the roots, which can be combined
to pinpoint the Galois group of f .
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