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1. CHARACTERIZING NORMAL EXTENSIONS

Recall that L/K is a normal extension if and only if every irreducible f ∈ K[x] either has no roots in
L or splits completely in L. It turns out that finite, normal extensions have a particularly straightforward
characterization:

Proposition 1.1. L/K if finite and normal if and only if L is the splitting field of some f ∈ K[x].

Proof. The forward direction is fairly straightforward: write L = K(α1, α2, . . . , αn), and let f be the product
of all the minimal polynomials of the αi. Then L is the splitting field of f over K.

Thus we focus on the reverse direction. Suppose L is the splitting field of g ∈ K[x]. Then L/K is finite,
so it remains to show that the extension must be normal. Accordingly, suppose we’re given some irreducible
f ∈ K[x] with a root α ∈ L. Pick some other root β of f . Where does β live? We hope to show that it’s in L,
but for now all we can say is that β ∈ L(β) – not super helpful. Here’s a picture of the situation:

L(β)

L

K(α) K(β)

K

Inspired by this diagram, we compute [L(β) : K] in two different ways:

[L(β) : L][L : K(α)][K(α) : K] = [L(β) : K] = [L(β) : K(β)][K(β) : K]. (1)

Since f is irreducible over K and has roots α and β, it must be the minimal polynomial of both. (Without loss
of generality we may assume f is monic.) Thus, Kronecker’s theorem implies

K(α) ' K[x]/(f) ' K(β).

Moreover, [K(α) : K] = deg f = [K(β) : K]. Thus (1) simplifies to

[L(β) : L][L : K(α)] = [L(β) : K(β)].

To conclude the proof, it therefore suffices to show that [L : K(α)] = [L(β) : K(β)]. Why is this true? Here’s
a proof by picture:

L L(β)

K(α) K(β)

Split extn of g over K(α)→

∼

←Split extn of g over K(β)

∼
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Let’s consider this a little more carefully. We know from above (by Kronecker) that K(α) ' K(β), and that L
is a splitting field of g over K(α). Furthermore, L(β) is a splitting field of g over K(β). Intuitively, this should
imply that L ' L(β), and thus, that [L : K(α)] = [L(β) : K(β)], which concludes the proof! To make this
rigorous is a bit painful, and follows immediately from the Isomorphism Lifting Lemma (see next section). �

2. THE ISOMORPHISM LIFTING LEMMA

The goal of this section is to state and prove an important technical result, the Isomorphism Lifting Lemma.
This result is usually the basis of the proof of the equivalent conditions for an extension to be Galois, and that
by itself should already convince you of its utility. However, I also hope it makes you appreciate the elegance
of Geck’s approach!

We give two additional demonstrations of the power of this lemma. The first is to put the proof of the previous
section on rigorous footing; the second is to prove that splitting fields are unique up to isomorphism. Before
we can even state the lemma, we require notation for a concept we’ve been using in class for quite some time.

Definition. Given a field isomorphism σ : K
∼−→ K ′ and a polynomial f ∈ K[x], we define the polynomial

σf ∈ K ′[x] as follows:

f(x) =
∑

0≤k≤n

akx
k =⇒ (σf)(x) :=

∑
0≤k≤n

σ(ak)x
k.

In other words, we are abusing notation and letting σ denote the induced ring isomorphism K[x]
∼−→ K ′[x]

which agrees with σ on K and maps x 7→ x.

Remark. Beware one possible point of confusion: (σf)(x) 6= σ
(
f(x)

)
! Indeed, writing f(x) = anx

n+ · · ·+a0
we find

σ
(
f(x)

)
= σ(anx

n + · · ·+ a0)

= σ(an)σ(x)
n + · · ·+ σ(a1)σ(x) + σ(a0)

= (σf)(σx).

(2)

Armed with this new notation, we can now state the result.

Isomorphism Lifting Lemma. Given f ∈ K[x] and a field isomorphism σ : K
∼−→ K ′. Let L be a splitting

field of f over K, and let L′ be a splitting field of σf over K ′. Then:
(1) [L : K] = [L′ : K ′],
(2) σ lifts to an isomorphism σ̃ : L

∼−→ L′ (i.e. there exists a σ̃ such that σ̃(α) = σ(α) ∀α ∈ K), and
(3) there are at most [L : K] extensions σ̃ of σ.

The following diagram might clarify the theorem:

L L′

K K ′

σ̃
∼

splitting extn of f −→ ←− splitting extn of σf

σ
∼

Before proving the result, we derive a couple of corollaries to demonstrate its utility.

Corollary 2.1. Splitting fields are unique up to isomorphism.

Proof. Suppose f ∈ K[x], and let L,L′ be two splitting fields of f over K. Applying the Isomorphism Lifting
Lemma with K = K ′ and σ the identity map. �

Corollary 2.2. Let L/K be the splitting field of f ∈ K[x] over K. Then |Aut(L/K)| ≤ [L : K].

Proof. Apply the Isomorphism Lifting Lemma to the case K = K ′ and σ = id; from above, we know we can
take L′ = L. Note that any K-automorphism of L must be a lift σ̃ of σ. The third assertion of the Isomorphism
Lifting Lemma implies that there are at most [L : K] of these. �



Unfortunately, the proof of the theorem is a bit long and technical, but it’s necessary for putting splitting
fields (and hence, Galois theory!) on a rigorous foundation. Think of it as a character-building exercise.

Proof of Isomorphism Lifting Lemma. The proof proceeds by induction on [L : K]. The base case [L : K] = 1
is equivalent to L = K. It is an exercise to deduce that L′ = K ′, and all three conclusions of the theorem
follow immediately.

We may therefore assume that [L : K] > 1. This implies that f has some root α 6∈ K; let mα ∈ K[x]

denote the minimal polynomial of α over K. We wish to lift the isomorphism σ : K
∼−→ K ′ to an isomorphism

σ̃ : L
∼−→ L′. How can we do this? What can we say about the behavior of this hypothetical σ̃? We already

know its behavior on K, since it’s supposed to agree with σ there. What about other elements? For example,
where does σ̃ send α?

STEP 1: If σ̃ exists, then it must send α to a root of σmα.
Proof. By (2), we have

σ̃
(
mα(x)

)
= (σ̃mα)(σ̃x) = (σmα)(σ̃x),

where the last equality holds because mα ∈ K[x]. Plugging in x = α we deduce that

(σmα)(σ̃α) = σ̃
(
mα(α)

)
= 0

as claimed. ♣

Inspired by this, we consider the set of all roots of σmα:

Zα := {β ∈ L′ : (σmα)(β) = 0}.
In Step 1 we proved that σ̃(α) ∈ Zα. Our strategy is to first lift σ to an isomorphism σ′ : K(α)

∼−→ K ′(β) for
some β ∈ Zα, and then to inductively lift σ′ the rest of the way to the desired isomorphism σ̃ : L

∼−→ L′. For
this to be effective, we need to know that Zα is nonempty. In fact, we’ll prove a bit more:

STEP 2: 1 ≤ |Zα| ≤ degmα

Proof. Zα is the set of roots of the polynomial σmα ∈ K ′[x]. Since L′ is a field, the num-
ber of roots of this polynomial in L′ is ≤ deg σmα = degmα; this proves the claimed upper
bound. Next we turn to the lower bound, which is equivalent to showing that σmα has a root
in L′. First observe that deg σmα ≥ 2 (why?), so σmα must have a root in some extension
of K ′. I claim that σmα splits in L′. Indeed, since σ : K[x]

∼−→ K ′[x] is a ring isomorphism
andmα | f , we have that σmα | σf . By definition, σf splits in L′, whence σmα must as well. ♦

We’ve now arrived at the heart of the proof.

STEP 3: For each β ∈ Zα there exists a unique lift of σ to a field isomorphism σ′ : K(α)
∼−→ K ′(β) sending

α 7→ β.
Warm-up to proof. How can we construct σ′? Well, we know one isomorphism involvingK(α):

K(α) ' K[x]/(mα).

Similarly, we have
K ′(β) ' K ′[x]/(mβ),

where mβ is the minimal polynomial of β over K. Thus to prove that K(α) ' K ′(β), we need
to show that K[x]/(mα) ' K ′[x]/(mβ). What is mβ? I claim that mβ = σmα. Indeed, since
mα is monic irreducible and σ : K[x]

∼−→ K ′[x] is a ring isomorphism, σmα must also be monic
irreducible. (Make sure you can explain why.) By definition, β is a root of σmα. This implies
that mβ | σmα, whence (by monicity and irreducibility) mβ = σmα as claimed. This makes
it clear how to guess the isomorphism K[x]/(mα)

∼−→ K ′[x]/(mβ), and the rest of the proof is



straightforward. Here we go.

Proof. Uniqueness is clear, since σ′ is completely determined by where it sends α. (Make sure
you can explain this.) Now we need to construct an isomorphism σ′ : K(α)

∼−→ K ′(β) which
sends α to β. Given our warm-up above, the natural guess is to take the composition of three
isomorphisms:

K(α)
∼−→ K[x]/(mα)

∼−→ K ′[x]/(σmα)
∼−→ K ′(β)

where the first isomorphism is given by α 7→ [x] (and maps constants to themselves), the second
isomorphism is given by g 7→ σg, and the third and final isomorphism is given by [x] 7→ β (and
maps constants to themselves). It is easy to verify that all three of these are isomorphisms, and
that their composition maps α to β. ♥

Finally, we arrive at the induction step. First, here’s a picture of the situation:

L L′

K(α) K ′(β)

K K ′

σ̃
∼

splitting extn of f −→ ←− splitting extn of σf

σ′

∼

degmα degmα

σ
∼

STEP 4: Induct and win.
Proof. Viewing f ∈ K(α)[x], we see that L is a splitting field of f over K(α), and L′ is a
splitting field of σ′f = σf over K ′(α). Furthermore, since α 6∈ K, we have

[L : K(α)] =
[L : K]

degmα

< [L : K].

By induction, we therefore know that
(1) [L : K(α)] = [L′ : K ′(β)],
(2) σ′ lifts to an isomorphism σ̃ : L

∼−→ L′, and
(3) there are at most [L : K(α)] different lifts σ̃ of σ′.

Now we use these to prove the corresponding claims.
(1) [L : K] = [L′ : K ′]
(2) σ lifts to σ̃
(3) For each β ∈ Zα there is precisely one lift of σ to an isomorphism σ′ : K(α)

∼−→ K ′(β)
which sends α to β. Since |Zα| ≤ degmα by Step 2, there are at most degmα

lifts of σ to an isomorphism σ′ : K(α)
∼−→ K ′(β). Putting this together with the

inductive step, we see that there are at most [L : K] lifts of σ to σ̃. ♠
We’ve proved all three conclusions! �
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