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Problem Set 1

1.1 In class we observed that complex conjugation ‘commutes’ with addition and multiplication, in the sense
that x + y = x + y and xy = x · y for any x, y ∈ C.

(a) Prove that complex conjugation commutes with all four operations +,−,×,÷. (We asserted it for
the first two operations, but didn’t prove it for any of them.)

(b) Prove that complex conjugation commutes with the functions exp() and sin(). [Hint: how can one
define these functions meaningfully for complex inputs? Taylor series! Don’t stress out too much about
convergence issues.]

(c) Can you construct a function f and a choice of z ∈ C such that f(z) is defined, but f(z) 6= f(z)?

1.2 Show that for any a, b ∈ Q such that
√
b 6∈ Q, the two numbers a±

√
b are algebraically indistinguishable

over Q. [Hint: start by proving that ±
√
b are algebraically indistinguishable.]

1.3 Prove that complex conjugates are algebraically indistinguishable over R.

1.4 The goal of this problem is to prove the following assertion from lecture:

Claim. The only choice of rational numbers a, b, c satisfying a + b 3
√

2 + c( 3
√

2)2 = 0 is a = b = c = 0.
(In other words, 1, 3

√
2, ( 3
√

2)2 are linearly independent over Q.)

Define
S := {(a, b, c) ∈ Z3 : a + b

3
√

2 + c(
3
√

2)2 = 0}.

We call the element (0, 0, 0) the trivial element of S.

(a) Prove that S forms a group under addition.

(b) Prove that if (x, y, z) ∈ S is nontrivial, then xyz 6= 0.

(c) We call (a, b, c) ∈ Z3 primitive iff gcd(a, b, c) = 1. Prove that if S contains a nontrivial element, then
it must contain a primitive nontrivial element.

(d) Prove that S only contains the trivial element. [Hint: recall that given any a, b, c ∈ Z, there exist
x, y, z ∈ Z such that ax + by + cz = gcd(a, b, c). You may use this statement without proof.]

(e) Prove the claim. (Careful! There’s something to check here.)
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