Instructor: Leo Goldmakher

NAME: _____

Williams College Department of Mathematics and Statistics

MATH 394 : GALOIS THEORY

Problem Set 2 – due Thursday, February 15th

INSTRUCTIONS:

This assignment must be turned in to my mailbox (on the right as you enter Bascom) by **4pm** sharp. Assignments may be submitted later than this by email to Alyssa, but no later than 4pm on Friday; in this case, the grade will be reduced by 10%.

Assignments submitted later than Friday at 4pm will not be graded.

Please print and attach this page as the first page of your submitted problem set.

PROBLEM	GRADE
2.1	
2.2	
2.3	
2.4	
Total	

Please read the following statement and sign below:

I understand that I am not allowed to use the internet to assist with this assignment. I also understand that I must write down the final version of my assignment in isolation from any other person. I pledge to abide by the Williams honor code.

SIGNATURE:

Problem Set 2

- **2.1** (Hi, this is abstract algebra. Remember me?) Given a group G and two subsets $A, B \subseteq G$, we define the *commutator of* A and B, denoted [A, B], to be the group generated by all the elements $\{[a,b]: a \in A, b \in B\}$, where $[a,b]:=aba^{-1}b^{-1}$. This problem does not assume prior experience with these objects, so **please do not look up any information on commutators.** However, you may look up the basic notions from group theory: subgroup, normal subgroup, quotient group, isomorphism, even and odd permutations.
 - (a) Prove that for any permutations $\sigma, \tau \in S_n$, the permutation $[\sigma, \tau]$ is even.
 - (b) Show that $[S_3, S_3] \simeq \mathbb{Z}_3$, and that $[\mathbb{Z}_3, \mathbb{Z}_3]$ is trivial. [*Hint: If you use part (a) you get to be lazy!*]

(c) Given a finite group G, consider the set $\{N \leq G : G/N \text{ is abelian}\}$. (Recall that $N \leq G$ means that N is a normal subgroup of G.) Prove that the smallest element of this set is [G, G].

2.2 The following questions refer to the write-up on Arnold's theorem.

(a) Solve Exercise 1 (from the write-up) in the special case n = 1, $\alpha = 1/3$, and f(x) = x for all $x \in \mathbb{C}$. (Note that $\mathcal{F}_1 = \mathbb{C}$.) [Extra Credit: Solve the exercise for a general continuous function f.]

(b) Exercise 4 from the write-up.

- (c) In view of Arnold's proof, explain what problem **2.1**(b) implies about the cubic formula.
- **2.3** In class, we saw that given one root of a cubic polynomial, we can use the quadratic formula to express the other two roots. The goal of this exercise is to generalize this principle.

(a) Carry out the above for a general (monic) cubic. In other words, given $f(x) = x^3 + a_2x^2 + a_1x + a_0$, and β such that $f(\beta) = 0$, determine the other two roots of f(x) in terms of β (and the a_i 's).

(b) Now suppose you're given the polynomial $f(x) = x^4 + a_3x^3 + a_2x^2 + a_1x + a_0$, and you happen to know that $f(\beta) = 0$. Write down a cubic polynomial whose roots are precisely the other three roots of f(x).

- (c) Generalize part (b) to arbitrary monic polynomials of degree n.
- 2.4 In class we discovered how to find the roots of a specific cubic. Here we explore this further.

(a) Using the method we described in class, derive a formula which always produces a root of $x^3 + cx + d$.

[You should arrive at
$$\sqrt[3]{-\frac{d}{2} + \sqrt{\frac{c^3}{27} + \frac{d^2}{4}}} + \sqrt[3]{-\frac{d}{2} - \sqrt{\frac{c^3}{27} + \frac{d^2}{4}}}]$$

(b) Note that 3 is a root of $x^3 - 3x - 18$. What does the formula from part (a) give? Can you show that this is equal to 3?

(c) Consider the cubic (x-1)(x-2)(x+3). Which root does the formula from part (a) produce? (This type of phenomenon is what forced people to recognize the existence – or at least, the utility! – of imaginary numbers.)

(d) Explicitly determine one solution of the equation $x^3 - 6x^2 + 21x - 22 = 0$.