Instructor: Leo Goldmakher

NAME: _____

Williams College Department of Mathematics and Statistics

MATH 394 : GALOIS THEORY

Problem Set 4 - due Thursday, March 1st

INSTRUCTIONS:

This assignment must be turned in to my mailbox (on the right as you enter Bascom) by **4pm** sharp. Assignments may be submitted later than this by email to Alyssa, but no later than 4pm on Friday; in this case, the grade will be reduced by 5%.

Assignments submitted later than Friday at 4pm will not be graded.

Please print and attach this page as the first page of your submitted problem set.

PROBLEM	GRADE
4.1	
4.2	
4.3	
4.4	
4.5	
4.6	
4.7	
Total	

Please read the following statement and sign below:

I understand that I am not allowed to use the internet to assist with this assignment. I also understand that I must write down the final version of my assignment in isolation from any other person. I pledge to abide by the Williams honor code.

SIGNATURE:_____

Problem Set 4

- **4.1** Let K be a field.
 - (a) Prove that 0x = 0 for all $x \in K$, and that xy = 0 implies x = 0 or y = 0.
 - (b) Prove that char K must either be 0 or prime.
 - (c) Given two fields K and K', prove that if char $K \neq$ char K' then there's no embedding of K into K'.
 - (d) Give an example of two non-isomorphic fields which have the same characteristic.
 - (e) Suppose L/K is a field extension. Prove that char K = char L.
- **4.2** Given a field K, define P_K to be the intersection of all subfields of K.
 - (a) Prove that P_K is a field.
 - (b) If char K = 0, then P_K is isomorphic to a familiar field. Which one? Prove it.
 - (c) If char K = p, then P_K is isomorphic to a familiar field. Which one? Prove it.
- **4.3** Let $\omega := e^{2\pi i/3}$. Show that $\mathbb{Q}(\omega) = \mathbb{Q}[\omega]$. (Recall that $\mathbb{Q}(\alpha)$ denotes the subfield of \mathbb{C} generated by α , whereas $\mathbb{Q}[\alpha]$ denotes the set of all polynomials in α with rational coefficients.)
- 4.4 Fun with quotients!
 - (a) Prove that $\mathbb{Q}[t]/(t^3-2) \simeq \mathbb{Q}[\sqrt[3]{2}].$
 - (b) Prove that $\mathbb{Q}[\sqrt[3]{2}] = \mathbb{Q}(\sqrt[3]{2})$. Do not use algebraic number theory! [*Hint: you may find the identity* $x^3 + y^3 = (x+y)(x^2 xy + y^2)$ useful.]
 - (c) Does there exist any $\alpha \in \mathbb{C}$ such that $\mathbb{Q}[t]/(t^3-2) \simeq \mathbb{Q}(\alpha)$ but $\mathbb{Q}(\alpha) \neq \mathbb{Q}(\sqrt[3]{2})$? Prove.
 - (d) Are the two fields $\mathbb{Q}[t]/(t^2+3)$ and $\mathbb{Q}[t]/(t^2+1)$ isomorphic? Why or why not? Prove.
 - (e) Are the two fields $\mathbb{R}[t]/(t^2+3)$ and $\mathbb{R}[t]/(t^2+1)$ isomorphic? Why or why not? Prove.
- 4.5 The purpose of this is to become familiar with the rational root test.
 - (a) Given $f \in \mathbb{Z}[x]$, say,

$$f(x) = a_n x^n + \dots + a_1 x + a_0$$

Prove that any rational root of f can be written $\pm \frac{k}{\ell}$ with $k \mid a_0$ and $\ell \mid a_n$.

- (b) Use (a) to determine whether or not $x^3 + x^2 5x + 2$ is reducible over \mathbb{Q} .
- (c) Use (a) to determine whether or not $3x^3 + x^2 5x + 2$ is reducible over \mathbb{Q} .
- **4.6** Recall from class that $f \in \mathbb{Z}[t]$ is *primitive* iff the coefficients of f are relatively prime. Prove that the product of two primitive polynomials is primitive.
- 4.7 The goal of this problem is to introduce a new irreducibility test.
 - (a) Prove that $|f^{-1}(k)| \leq \deg f$ for any nonconstant $f \in \mathbb{Z}[t]$. [Here $f^{-1}(k) := \{n \in \mathbb{Z} : f(n) = k\}$.]
 - (b) Given $f \in \mathbb{Z}[t]$, consider the set

$$P_f := \{ n \in \mathbb{Z} : |f(n)| = 1 \text{ or prime} \}$$

Suppose f is monic and non-constant. Prove that if $|P_f| \ge 2 \deg(f) + 1$ then f is irreducible over \mathbb{Q} . [Colloquially this says that if f outputs primes at a lot of inputs, it must be irreducible. A famous open conjecture (due to Bunyakovsky) asserts a strong converse: if $f \in \mathbb{Z}[t]$ is primitive and irreducible then it outputs infinitely many primes. This has been proved for all primitive degree 1 polynomials, but is not known to hold for any single example with deg $f \ge 2$.]

(c) Use the above to prove that $x^4 - 2x^3 + 9x - 1$ is irreducible over \mathbb{Q} .