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Problem Set 5

5.1 Irreducible fun!

(a) Is x6 + x+ 1 irreducible over Q? Prove or disprove.

(b) Is x4 + 4 irreducible over Q? Prove or disprove.

(c) Give five different proofs that x3 − 2 is irreducible over Q. [Please don’t use Eisenstein more than
once.]

(d) Can you produce an example of a polynomial f and a prime p such that [f ] is irreducible over Fp,
but f is reducible over Q?

(e) Prove that 1 + t+ t2 + · · ·+ tn−1 is irreducible iff n is prime.

5.2 True facts about field extensions.

(a) Suppose K and L are fields, and that there exists a ring homomorphism ϕ : K → L. Prove that L
is a field extension of K.

(b) Prove that [L : K] = 1 if and only if L ' K.

(c) Suppose L/K is a field extension with char K 6= 2. Prove that [L : K] = 2 if and only if ∃α ∈ L \K
such that L = K(α) and α2 ∈ K.

(d) Suppose L/K is a field extension with the property that every α ∈ L is algebraic over K. Prove
that any ring R lying between K and L (i.e. K ⊆ R ⊆ L) must be a field.

(e) Suppose α ∈ L/K is transcendental over K. Prove that K(α) 6' K[α].

5.3 Minimal polynomials, maximal awesome. [Throughout, we use the following notation: if α is algebraic
over K, we denote the minimal polynomial of α over K by mα. By convention, mα ∈ K[t] is monic.]

(a) Suppose α ∈ C is the root of some monic polynomial f ∈ Z[t]. Prove that mα ∈ Z[t].

(b) Find the minimal polynomial for
√

2 +
√
−5 over Q.

(c) Find the minimal polynomial for
√

2 +
√
−5 over R.

(d) Find the minimal polynomial for e2πi/5 over Q.

(e) Given α algebraic over K, suppose mα has odd degree. Prove that K(α2) = K(α).

5.4 The goal of this exercise is to show that polynomials can’t have too many roots in a field. More precisely:

Theorem 1. Let K be a field, and suppose f ∈ K[x] is nonconstant. Consider the collection of all its
roots in K:

Zf := {α ∈ K : f(α) = 0}.

Then |Zf | ≤ deg f .

(a) For any f ∈ K[x] and any α ∈ K, prove that (x − α) |
(
f(x) − f(α)

)
. (In other words, prove that

f(x)−f(α)
x−α ∈ K[x].)

(b) Suppose α ∈ Zf . Prove that f(x) = (x− α)g(x) for some g ∈ K[x], and that Zf ⊆ Zg ∪ {α}.
(c) Prove the theorem.

(d) Does the theorem hold if K is a ring, rather than a field? Justify your answer.
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