Instructor: Leo Goldmakher

NAME: _____

Williams College Department of Mathematics and Statistics

MATH 394 : GALOIS THEORY

Problem Set 5 - due Thursday, March 8th

INSTRUCTIONS:

This assignment must be turned in to my mailbox (on the right as you enter Bascom) by **4pm** sharp. Assignments may be submitted later than this by email to Alyssa, but no later than 4pm on Friday; in this case, the grade will be reduced by 5%.

Assignments submitted later than Friday at 4pm will not be graded.

Please print and attach this page as the first page of your submitted problem set.

PROBLEM	GRADE
5.1	
5.2	
5.3	
5.4	
Total	

Please read the following statement and sign below:

I understand that I am not allowed to use the internet to assist with this assignment. I also understand that I must write down the final version of my assignment in isolation from any other person. I pledge to abide by the Williams honor code.

SIGNATURE:

Problem Set 5

5.1 Irreducible fun!

- (a) Is $x^6 + x + 1$ irreducible over \mathbb{Q} ? Prove or disprove.
- (b) Is $x^4 + 4$ irreducible over \mathbb{Q} ? Prove or disprove.
- (c) Give five different proofs that $x^3 2$ is irreducible over \mathbb{Q} . [Please don't use Eisenstein more than once.]
- (d) Can you produce an example of a polynomial f and a prime p such that [f] is irreducible over \mathbb{F}_p , but f is reducible over \mathbb{Q} ?
- (e) Prove that $1 + t + t^2 + \dots + t^{n-1}$ is irreducible iff n is prime.
- 5.2 True facts about field extensions.
 - (a) Suppose K and L are fields, and that there exists a ring homomorphism $\varphi: K \to L$. Prove that L is a field extension of K.
 - (b) Prove that [L:K] = 1 if and only if $L \simeq K$.
 - (c) Suppose L/K is a field extension with char $K \neq 2$. Prove that [L:K] = 2 if and only if $\exists \alpha \in L \setminus K$ such that $L = K(\alpha)$ and $\alpha^2 \in K$.
 - (d) Suppose L/K is a field extension with the property that every $\alpha \in L$ is algebraic over K. Prove that any ring R lying between K and L (i.e. $K \subseteq R \subseteq L$) must be a field.
 - (e) Suppose $\alpha \in L/K$ is transcendental over K. Prove that $K(\alpha) \not\simeq K[\alpha]$.
- **5.3** Minimal polynomials, maximal awesome. [Throughout, we use the following notation: if α is algebraic over K, we denote the minimal polynomial of α over K by m_{α} . By convention, $m_{\alpha} \in K[t]$ is monic.]
 - (a) Suppose $\alpha \in \mathbb{C}$ is the root of some *monic* polynomial $f \in \mathbb{Z}[t]$. Prove that $m_{\alpha} \in \mathbb{Z}[t]$.
 - (b) Find the minimal polynomial for $\sqrt{2} + \sqrt{-5}$ over \mathbb{Q} .
 - (c) Find the minimal polynomial for $\sqrt{2} + \sqrt{-5}$ over \mathbb{R} .
 - (d) Find the minimal polynomial for $e^{2\pi i/5}$ over \mathbb{Q} .
 - (e) Given α algebraic over K, suppose m_{α} has odd degree. Prove that $K(\alpha^2) = K(\alpha)$.

5.4 The goal of this exercise is to show that polynomials can't have too many roots in a field. More precisely:

Theorem 1. Let K be a field, and suppose $f \in K[x]$ is nonconstant. Consider the collection of all its roots in K:

$$\mathcal{Z}_f := \{ \alpha \in K : f(\alpha) = 0 \}.$$

Then $|\mathcal{Z}_f| \leq \deg f$.

(a) For any $f \in K[x]$ and any $\alpha \in K$, prove that $(x - \alpha) \mid (f(x) - f(\alpha))$. (In other words, prove that $\frac{f(x) - f(\alpha)}{x - \alpha} \in K[x]$.)

(b) Suppose $\alpha \in \mathcal{Z}_f$. Prove that $f(x) = (x - \alpha)g(x)$ for some $g \in K[x]$, and that $\mathcal{Z}_f \subseteq \mathcal{Z}_g \cup \{\alpha\}$.

- (c) Prove the theorem.
- (d) Does the theorem hold if K is a ring, rather than a field? Justify your answer.