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the Williams honor code.
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Problem Set 7

7.1 Prove that Q(ω 3
√

2) ' Q(ω2 3
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2) 6= Q(ω2 3
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2).

7.2 In class we found four fields lying between Q and Q(ω, 3
√

2). Prove that there are no others.

7.3 Carefully check that our lattice of all subgroups of D3 (the dihedral group of order 6) is correct and
complete. Also identify all those subgroups which are normal.

7.4 We imitate the construction of the Galois correspondence from class, but this time with the polynomial

f(x) := x4 − 4x2 + 2. Let α :=
√

2 +
√

2 denote one of the roots of f .

(a) Prove that Q(α) is a splitting field of f .

(b) Draw a lattice of all intermediate fields between Q and Q(α), along with the degrees of each extension.

(c) Determine Aut
(
Q(α)

)
. What familiar group is it isomorphic to?

(d) Draw a lattice of all subgroups of Aut
(
Q(α)

)
, labelling all the connecting edges by the index of one

group inside the other.

7.5 Another Galois correspondence, this time for the polynomial g(x) := x4 − 12x2 + 35.

(a) Determine a splitting field K of g. (Write it in the form Q(β1, β2).)

(b) Draw a lattice of all intermediate fields between Q and K, along with the degrees of each extension.

(c) Determine Aut(K). What familiar group is it isomorphic to?

(d) Draw a lattice of all subgroups of Aut(K), labelling all the connecting edges by the index of one
group inside the other.
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