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Problem Set 10

10.1 Given sets A,B and functions f : A→ B and g : B → A such that g ◦ f = idA and f ◦ g = idB .

(a) Suppose B is finite. Prove that A must be finite, and that f and g are both bijections.

(b) Does (a) still hold if A and B are infinite? Prove / disprove.

10.2 Decide (with proof!) whether or not each of the following is separable.

(a) x4 + 4x3 + 3x2 + x+ 2 over F7

(b) xn − 1 over a given field F .

10.3 The goal of this problem is to prove
The Fundamental Lemma. Given L/K a finite Galois extension and α ∈ L. Then

mα(x) =
∏
β∈A

(x− β),

where mα ∈ K[x] is the minimal polynomial of α over K and A := {σ(α) : σ ∈ Gal(L/K)} is the set of
all Galois conjugates of α.

(a) Suppose f, g ∈ K[x], and let F be a splitting field of g over K. Prove that f | g over K[x] iff f | g
over F [x]. [Hint: use problem 9.5.]

(b) Prove the Fundamental Lemma. [Hint: Set fα(x) :=
∏
β∈A

(x−β), and prove that fα | mα and mα | fα.]

10.4 Given L/K a finite Galois extension, let F be an intermediate field corresponding to a group H under
the Galois correspondence. Suppose F/K is Galois. Prove that the map ϕ : Gal(L/K) → Gal(F/K)
defined by σ 7→ σ

∣∣
F

is a surjection. (This completes our proof from class that Gal(F/K) ' G/H.)

10.5 Given L/K a finite Galois extension.

(a) Prove that α is a primitive element of L/K iff all Galois conjugates of α are distinct.

(b) Is i+ 4
√

2 a primitive element of Q(i, 4
√

2)/Q? Prove or disprove.

(c) Is 4
√

2 + i 4
√

2 a primitive element of Q(i, 4
√

2)/Q? Prove or disprove.

10.* Bonus problem: this may be submitted any time by Friday, May 11th; your solution must be in LaTeX.
A correct and complete solution will earn you 2 percentage points added to your overall course grade.
Feel free to look up group actions in any textbook, but not online. Our goal is to prove

Theorem (Sylow, 1872). If G is a group and pk
∣∣∣|G|, then G has a subgroup of order pk.

(a) Given a finite group G and a subgroup H ≤ G, verify that H acts on G/H by left multiplication (i.e.
show that this is a well-defined group action.)

(b) Given H acting on G/H by left multiplication as above (with G finite), consider the set of fixed
points of this action:

F := {[x] ∈ G/H : h · [x] = [x] for every h ∈ H}.
Prove that F = N(H)/H, where N(H) is the normalizer of H. (The normalizer of H is the largest
subgroup of G in which H is normal: N(H) = {g ∈ G : H = gHg−1}.) Deduce that F is a group.

(c) Let G,H,F be as above. Prove that if |H| = pn for some n ≥ 1, then |G/H| ≡ |F| (mod p).

(d) Suppose G is a group with pk
∣∣∣|G|, and that H ≤ G has order pk−1. Prove the existence of an

intermediate subgroup H ≤ K ≤ G such that [K : H] = p. [Hint: We may assume k > 1 (why?). Define
the set of fixed points F as above, and consider the natural projection map π : N(H) � F . Show that
there exists a subgroup H ′ ≤ F of order p. What can you say about the pullback π−1(H ′)? ]

(e) Prove Sylow’s theorem (stated in the introduction to this problem).
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