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Problem Set 11

11.1 Given a group G, recall that the conjugacy class of a ∈ G is defined to be

C(a) := {gag−1 : g ∈ G}.

(a) Prove that N E G if and only if ∃A with {e} ⊆ A ⊆ G such that N =
⋃
a∈A

C(a).

(b) It turns out (doing a brute force calculation) that the alternating group A5 can be partitioned into
five distinct conjugacy classes:

• C(e), which consists of one element;

• C
(
(1 2 3 4 5)

)
, which consists of 12 elements;

• C
(
(2 1 3 4 5)

)
, which consists of 12 elements;

• C
(
(1 2)(3 4)

)
, which consists of 15 elements; and

• C
(
(1 2 3)

)
, which consists of 20 elements.

Use this information to prove that A5 is simple. [Your proof should be very short.]

11.2 In class I drew an analogy between unique factorization in Z and the Jordan-Hölder theorem. The goal
of this problem is to explore this further.

(a) Determine (with proof) two non-isomorphic groups G such that

• G has a normal subgroup N which is the cyclic group of order 6, and

• G/N is the cyclic group of order 2.

(b) Determine (with proof) two non-isomorphic groups which have the same list of composition factors.

(c) Prove that Jordan-Hölder generalizes the fundamental theorem of arithmetic. In other words, prove
that Jordan-Hölder implies that any n ∈ Z has a unique factorization into primes.

11.3 Let ζn denote the principal nth root of unity, i.e. ζn = e2πi/n.

(a) Prove that Q(ζn)/Q is Galois.

(b) Let G := Gal(Q(ζn)/Q). Prove that G embeds into (Z/nZ)×, the group of units of Z/nZ. Deduce
that G is abelian. [Recall that a unit of a ring is an element which is invertible under multiplication. By
embed I mean there exists an injective homomorphism.]

11.4 The goal of this problem is to determine Gal(f) for f(x) = x5 − 4x− 2. [Review problem 8.4(a).]

(a) Prove that Gal(f) contains an element of order 5. [Hint: use Cauchy’s theorem, aka problem 3.5.]

(b) Prove that Gal(f) contains an element of order 2. [Hint: f has two roots in C and three in R.]

(c) Prove that Gal(f) ' S5.

11.5 Prove that the normal series G0 B G1 B · · · B Gn := {e} is abelian (i.e. that all the quotients Gi/Gi+1

are abelian) if and only if [Gi, Gi] E Gi+1 for all i. [Hint: see problem 2.1.]

11.6 Given an irreducible f ∈ Q[x] which has a root that can be expressed in terms of radicals. Prove that
every root of f can be expressed in terms of radicals.
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