ARE SUBGROUPS OF PRIME INDEX NORMAL?

LEO GOLDMAKHER

1. INTRODUCTION

A classical result in group theory is that any subgroup of index 2 must be normal. But what about subgroups of a more general index? Such questions play a role in applications, e.g. to solvability of groups of prime-power order.

Even the case of general prime index isn't as straightforward as one might guess. For example, one¹ might be tempted to conjecture that if $H \le G$ has prime index, then H must be a normal subgroup of G. This is not the case:

Example 1. Let D_8 denote the dihedral group of order 8. A copy of D_8 sits inside S_4 and has index 3; however, $D_8 \not \lhd S_4$. (Exercise!)

However, if we impose additional conditions on the index, we can prove normality. Here's a famous example of this. Let $P^{-}(n)$ denote the smallest prime factor of n.

Proposition 1.1. Suppose $H \leq G$ and $|G/H| = P^-(|G|)$. Then $H \triangleleft G$.

We give two proofs of this result. In both, let $p := P^{-}(|G|)$.

Proof 1 (via group actions). The natural action of G on G/H by left multiplication induces a homomorphism $\varphi: G \to S_p$. I claim that ker $\varphi = H$. (This will conclude the proof, since ker $\varphi \triangleleft G$.)

First observe that ker $\varphi \leq H \leq G$, so it suffices to prove that $|G/\ker \varphi| = p$. Since $G/\ker \varphi$ embeds in S_p it has order dividing p!. But also, the order of $G/\ker \varphi$ divides |G|. These two conditions force $|G/\ker \varphi| = p$.

Remark. This proof seems to be folklore – if anyone knows a reference, I'd be grateful!

Proof 2 (via induction on |G|). In order to induct on |G|, we'd like to produce a subgroup $K \leq H$ with |H/K| = p. But how do we find such a K? The key observation in this proof is that one can take K to be the intersection of any two subgroups which satisfy the hypotheses of Proposition 1.1.

First note that if H happens to be the only subgroup of index p in G, then the proof is already over (since in this case H is fixed under conjugation, hence must be normal). Thus we may assume G has two subgroups H and H', both of index p in G. Let

$$K := H \cap H'.$$

and observe that

$$|HH'| = \frac{|H||H'|}{|K|}.$$
 (*)

(This is most easily seen by applying the first isomorphism theorem to the map $H \times H' \to G$ defined by $(x, y) \mapsto xy$.) I claim that K is our desired subgroup of index p in H, and that HH' = G. Indeed, (*) gives

$$1 < |H/K| \le |G/H'| = p,$$

while Lagrange's theorem implies $|H/K| \mid |G|$. Since p is the *smallest* nontrivial divisor of |G|, we immediately deduce that

$$|H/K| = p = |H'/K|.$$

Date: May 24, 2018.

¹The author.

Combining this with (*) shows that

$$HH' = G.$$

By induction we know that $K \triangleleft H$ and $K \triangleleft H'$, whence $K \triangleleft HH' = G$. Moreover, $|G/K| = p^2$, whence the group G/K must be abelian. (Exercise!) Thus every subgroup of G/K is normal; in particular, $H/K \triangleleft G/K$. The fourth isomorphism theorem now implies that $H \triangleleft G$.

Remark. I learned this proof thanks to a post by Tobias Kildetoft on math stackexchange.

2. LAM'S THEOREM

In view of Example 1 and Proposition 1.1, it's natural to wonder about sufficient conditions on |G/H| to guarantee that $H \triangleleft G$. In 2004, T. Y. Lam (*On Subgroups of Prime Index*, Amer. Math. Monthly) discovered a lovely elementary proof of Proposition 1.1 which has the added benefit of producing a more general result.

Proposition 2.1. Given $H \leq G$, set n := |G/H|. Consider the following statements:

(1) If $g \notin H$, then $g^k \in H$ for some $k \in \mathbb{N}$ satisfying $P^-(k) \ge n$. (2) If $g \notin H$, then $g^2, g^3, \dots, g^{n-1} \notin H$. (3) If $g \notin H$, then $g^n \in H$. Then (1) \Longrightarrow (2) \Longrightarrow $H \lhd G \Longrightarrow$ (3).

Exercise 1. Note that if n is prime, then (3) \implies (1) and the above proposition becomes the equivalence of all three assertions with the normality of H in G. We explore this special case of the proposition in this exercise.

- (a) Prove that Proposition 2.1 implies Proposition 1.1. (Your proof should be very short.)
- (b) Use Proposition 2.1 to give a very short proof that (the embedding of) D_8 isn't normal in S_4 .
- (c) Use Proposition 2.1 to give a very short proof that (the embedding of) $\mathbb{Z}_2 \times \mathbb{Z}_2$ is normal in A_4 .

Proof of Proposition 2.1. We only prove that (2) $\implies H \triangleleft G$, leaving the other implications as exercises. Assume (2) holds. It suffices to show that $xHx^{-1} \subseteq H$ for all $x \in G$. This is automatically true for $x \in H$, so we henceforth assume $x \notin H$.

Pick any $g \in (xHx^{-1}) \setminus H$. Thus (2) implies $H, gH, \ldots, g^{n-1}H$ are pairwise disjoint. Moreover, since |G/H| = n, this is a complete list of cosets, i.e.

$$G/H = \bigsqcup_{0 \le \ell \le n-1} g^{\ell} H.$$

It follows that $xH = g^i H$ for some $i \le n-1$. Since $x \notin H$ by hypothesis, $i \ne 0$. But now observe that $gxH = xH = g^i H$, whence

$$g^i H = xH = g^{i-1}H$$

This is impossible, which means that we couldn't have picked g the way we wanted to, i.e. that $xHx^{-1} \subseteq H$. Since x is arbitrary, we conclude that $H \lhd G$.

Exercise 2. When n is composite, the assertions of Proposition 2.1 aren't equivalent. We explore this here.

(a) Construct $H \triangleleft G$ such that both assertions (1) and (2) fail to hold.

(b) Construct $H \not\lhd G$ for which assertion (3) holds.