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2.1 In class, we saw that given one root of a cubic polynomial, we can use the quadratic formula to express
the other two roots. The goal of this exercise is to generalize this principle.

(a) Carry out the above for a general (monic) cubic. In other words, given f(x) = x3 + a2x
2 + a1x+ a0,

and β such that f(β) = 0, determine the other two roots of f(x) in terms of β (and the ai’s).

Consider the monic cubic polynomial f(x) = x3 + a2x
2 + a1x+ a0. Let β be a given root of

f , and let α and γ be the other two roots of f . Then we can write

f(x) = (x− α)(x− β)(x− γ) = x3 − (α+ β + γ)x2 + (αβ + αγ + βγ)x− αβγ.

Matching coefficients with the ai yields α+ β + γ = −a2 and αβγ = −a0.

We consider two cases. If β = 0, then a0 = 0 whence f(x) = x(x2 + a2x+ a1). On the other
hand,

f(x) = (x− α)(x− β)(x− γ) = x(x− α)(x− γ),

so α, γ must be the roots of the quadratic polynomial x2 + a2x+ a1. It follows that

α, γ =
−a2 ±

√
a22 − 4a1
2

.

If β ̸= 0 then α+ γ = −(β + a2) and αγ = −a0

β imply that

(x− α)(x− γ) = x2 − (α+ γ) + αγ = x2 + (β + a2)x− a0
β
.

Thus in this case,

α, γ =
−(β + a2)±

√
(β + a2)2 +

4a0

β

2
.

(b) Now suppose you’re given the polynomial f(x) = x4 + a3x
3 + a2x

2 + a1x + a0, and you happen to
know that f(β) = 0. Write down a cubic polynomial whose roots are precisely the other three roots of
f(x).

It will follow from our work in part (c) that

x3 + (a3 + β)x2 + (a2 + βa3 + β2)x+ (a1 + βa2 + β2a3 + β3)

is a cubic polynomial whose three roots are precisely the other three roots of f .



(c) Generalize part (b) to arbitrary monic polynomials f of degree n. [You should get a polynomial of

the form
∑

0≤j≤n−1

qj(β)x
j where the qj are polynomials which are very closely related to f .]

Proposition. Given a monic polynomial p(x) = xn + an−1x
n−1 + · · ·+ a1x+ a0, denote by

pk(x) the sum of all terms of degree ≤ k, i.e.

pk(x) := akx
k + ak−1x

k−1 + · · ·+ a1x+ a0.

Now set

qk(x) :=
p(x)− pk(x)

xk+1
.

If β is one of the n roots of p(x), then the roots of

p̂(x) := xn−1 + qn−2(β)x
n−2 + qn−3(β)x

n−3 + · · ·+ q1(β)x+ q0(β)

are precisely the other n− 1 roots of p(x).

Proof. Let α1, α2, . . . , αn be the roots (not necessarily distinct) of p(x). Then

p(x) = (x− α1)(x− α2) · · · (x− αn) = xn − s1x
n−1 + s2x

n−2 − · · · ± sn

where

s1 =
∑

1≤i≤n

αi

s2 =
∑

1≤i<j≤n

αiαj

s3 =
∑

1≤i<j<k≤n

αiαjαk

...

sn = α1α2α3...αn.

(The sn are called symmetric polynomials, and play an important role in the history of Galois
theory.) Comparing these coefficients to those of p(x), we see that

st = (−1)tan−t.

Continued on next page...
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We’re given a root β of p(x); WLOG let’s say β = α1. The unique monic polynomial of
degree n− 1 with all the other αi as its roots is

p̂(x) = (x− α2)(x− α3) · · · (x− αn) = xn−1 − ŝ1x
n−2 + ŝ2x

n−3 − · · · ± ŝn−1

where
ŝ1 =

∑
2≤i≤n

αi = s1 − β,

ŝ2 =
∑

2≤i<j≤n

αiαj = s2 − βŝ1 = s2 − βs1 + β2,

ŝ3 = s3 − α1ŝ2 = s3 − β(s2 − βs1 + β2) = s3 − βs2 + β2s1 − β3,

and so on until
ŝn−1 = sn−1 − βsn−2 + β2sn−3 − ...± βn−1.

Applying some elbow grease, we deduce that the coefficient of xt in p̂(x) is

(−1)n−1−tŝn−1−t = at+1 + at+2β + · · ·+ an−2β
n−3−t + an−1β

n−2−t + βn−1−t.

Some algebraic manipulation yields the claim.

2.2 In class we discovered how to find the roots of a specific cubic. Here we explore this further.

(a) Using the method we described in class, derive a formula which always produces a root of x3+ cx+d.

[You should arrive at 3

√
−d

2 +
√

c3

27 + d2

4 + 3

√
−d

2 −
√

c3

27 + d2

4 ]

Straightforward adaptation of our work from class.

(b) Note that 3 is a root of x3 − 3x− 18. What does the formula from part (a) give? Is it obvious that
this is equal to 3?

We easily verify that 3 is a root of p(x) = x3 − 3x− 18. Plugging c = −3 and d = −18 into
the formula given in part (a) we produce a root α of p(x):

α =
3

√
−d

2
+

√
c3

27
+

d2

4
+

3

√
−d

2
−
√

c3

27
+

d2

4

=
3

√
9 +

√
−1 + 81 +

3

√
9−

√
−1 + 81

=
3

√
9 + 4

√
5 +

3

√
9− 4

√
5.

To simplify this further, we need to find x, y such that

(x+ y
√
5)3 = 9 + 4

√
5.

This is equivalent to solving the simultaneous equations

x3 + 15xy2 = 9

3x2y + 5y3 = 4.

continued on next page...
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Solving the first equation for y and plugging it into the second produces, after some intense
algebraic manipulations and clever substitutions, the equation x3 − 3x − 18 = 0. We’ve
returned to our original equation! Thus we see that without some divine inspiration, this
problem is hopeless. This is why the cubic formula is not usually so helpful.

It turns out that divine inspiration struck some of you, however: you observed that(
3

2
± 1

2

√
5

)3

= 9± 4
√
5.

This implies that

α =
3

√
9 + 4

√
5 +

3

√
9− 4

√
5 =

(
3

2
+

1

2

√
5

)
+

(
3

2
− 1

2

√
5

)
= 3.

Mathemagic!

(c) Consider the cubic (x−1)(x−2)(x+3) with roots 1, 2, −3. Can you determine, without calculator or
computer, which of these three roots the cubic formula from part (a) produces? [This type of phenomenon
forced people to recognize the existence—or at least, the utility!—of imaginary numbers.]

Consider the cubic equation p(x) = (x − 1)(x − 2)(x + 3) = x3 − 7x + 6. Plugging in the
values c = −7, d = 6 into the formula from part (a) we see that some root of this equation
is given by

α =
3

√
−d

2
+

√
c3

27
+

d2

4
+

3

√
−d

2
−

√
c3

27
+

d2

4

=
3

√
−3 +

√
−343

27
+ 9 +

3

√
−3−

√
−343

27
+ 9

=
3

√
−3 +

√
−100

27
+

3

√
−3−

√
−100

27

=
3

√
−3 +

10

27

√
−27 +

3

√
−3− 10

27

√
−27.

In order to evaluate this sum, we need to find a cube root of −3 + 10
27

√
−27 in C. For any

a, b ∈ Q we have that

(a+ b
√
−27)3 = a3 + 3a2b

√
−27− 81ab2 − 27b3

√
−27 = (a3 − 81ab2) + (3a2b− 27b3)

√
−27

=⇒ (a− b
√
−27)3 = (a3 − 81ab2)− (3a2b− 27b3)

√
−27.

Therefore, in order to find such a cube root we need to find a, b ∈ Q such that a3−81ab2 = −3
and 3a2b − 27b3 = 10

27 . As in part (b), this is a totally hopeless problem without divine
inspiration.

continued on next page...
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However, some of you were inspired. It turns out there are three such pairs (a, b), namely
( 12 ,−

5
18 ), (1,

2
9 ), and (− 3

2 ,
1
18 ). These correspond to the three different roots 1, 2, and −3 of

p(x) since choosing them in turn yields

α1 =
3

√
−3 +

10

27

√
−27 +

3

√
−3− 10

27

√
−27 =

(
1

2
− 5

18

√
−27

)
+

(
1

2
+

5

18

√
−27

)
= 1,

α2 =
3

√
−3 +

10

27

√
−27 +

3

√
−3− 10

27

√
−27 =

(
1 +

2

9

√
−27

)
+

(
1− 2

9

√
−27

)
= 2,

α3 =
3

√
−3 +

10

27

√
−27 +

3

√
−3− 10

27

√
−27 =

(
−3

2
+

1

18

√
−27

)
+

(
−3

2
− 1

18

√
−27

)
= −3.

This is rather suspicious: the formula is supposed to produce one of the roots, not all three!
It’s also worth pointing out that without being able to extract square roots of negative
numbers, the formula would immediately fail, whereas if we allow imaginary numbers then
it’s at least hypothetically possible to use the formula to find the roots. Examples like this
led to the invention of imaginary numbers.

Summarizing parts (b) and (c), we see that the cubic formula is rubbish when it comes
to actually determining the roots of a cubic. On the other hand, it does reduce solving
an arbitrary cubic to solving some simpler equations... a point we’ll return to later in the
course.

(d) Use the cubic formula to explicitly determine one solution of the equation x3 − 6x2 + 21x− 22 = 0.

We first complete the cube. Noting that (x− 2)3 = x3 − 6x2 + 12x− 8, we have

x3 − 6x2 + 21x− 22 = (x− 2)3 + 9x− 14 = (x− 2)3 + 9(x− 2) + 4.

We’ve therefore reduced the problem to finding a root of the auxiliary cubic f(x) = x3+9x+4.
Using the formula in part (a) with c = 9, d = 4 produces a root of f :

3

√
−d

2
+

√
c3

27
+

d2

4
+

3

√
−d

2
−
√

c3

27
+

d2

4
=

3

√
−2 +

√
27 + 4 +

3

√
−2−

√
27 + 4

=
3

√
−2 +

√
31 +

3

√
−2−

√
31

It immediately follows that

2 +
3

√
−2 +

√
31 +

3

√
−2−

√
31

is a root of the given cubic.
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2.3 The goal of this exercise is to review and develop some nice properties of symmetric groups.

(a) Prove that the collection of adjacent transpositions

{(k k + 1) : 1 ≤ k < n}

generates all of Sn.

Observe that (n n + m) = (n n + 1)(n + 1 n + m)(n n + 1). The claim follows by a
straightforward induction on m.

(b) Prove that the transposition (1 2) and the n-cycle (1 2 · · · n) generate all of Sn. [Hint: use part (a).]

Observe that (k + 1 k + 2) = (1 2 . . . n)(k k + 1)(1 2 . . . n)−1 for all 1 ≤ k < n− 1. Thus
we can generate all adjacent transpositions. By part (a), we can then generate all of Sn.

(c) Prove that given a prime p, any transposition and any p-cycle generate all of Sp. [Hint: relabel
elements to put yourself in a position to use part (b).]

Without loss of generality, relabel the p-cycle as (0 1 . . . p − 1) and the transposition as
(0 j). A similar argument as in part (b) allows us to generate all transpositions (a b) such
that b− a ≡ j (mod p). Since p is prime, j is a generator of the index set Zp. Thus, we can
relabel each transposition of the form (kj (k + 1)j) as (k k + 1). Then we can generate all
of Sp by part (a).

(d) Show by example that primality is a necessary condition in part (c). In other words, find an integer
n, as well as a transposition and an n-cycle in Sn, which do not generate Sn.

I claim (1 3) and (1 2 3 4) do not generate S4. To see this, let r := (1 3) and f := (1 2 3 4),
and observe that we have the relations

r2 = () = f4 and fr = rf3.

Thus r and f generate the dihedral group D8 inside of S4.

(e) Suppose φ : Sn → {±1} is a nontrivial homomorphism. Prove that φ is the sign function on Sn.
[Hint: start by proving that φ(σ) = φ

(
(1 2)

)
for any transposition σ ∈ Sn.]

Lemma. φ(σ) = φ
(
(1 2)

)
for any transposition σ ∈ Sn.

Proof. Observe that any nontrivial transposition (m n) is conjugate to (1 2):

(m n) = (1 m)(2 n)(1 2)(2 n)(1 m).

Since φ is a homomorphism and {±1} is abelian, we deduce that φ
(
(m n)

)
= φ

(
(1 2)

)
.

There are therefore two cases to consider:

� φ
(
(1 2)

)
= 1. Then the lemma implies φ(σ) = 1 for all transpositions σ ∈ Sn. Since

Sn is generated by transpositions, we deduce that φ is the trivial homomorphism.

� φ
(
(1 2)

)
= −1. Then the lemma implies φ(σ) = −1 for all transpositions σ ∈ Sn.

Since σ agrees with sgn on a set of generators of Sn, we deduce that σ = sgn on all of
Sn.

Combining these two cases concludes the proof.

6



(f) Suppose α1, α2, . . . , αn are distinct complex numbers, and σ ∈ Sn. What is the relationship between∏
i<j

(αi − αj) and
∏
i<j

(ασ(i) − ασ(j))

in terms of σ? Prove your assertion. [Hint: use part (e).]

Claim.
∏
i<j

(ασ(i) − ασ(j)) = sgn(σ)
∏
i<j

(αi − αj).

Proof. Define φ : Sn → {±1} by

φ(σ) :=
∏
i<j

ασ(i) − ασ(j)

αi − αj
.

Observe that φ is a homomorphism, since

φ(στ) =
∏
i<j

αστ(i) − αστ(j)

αi − αj
=

∏
i<j

αστ(i) − αστ(j)

ατ(i) − ατ(j)
·
ατ(i) − ατ(j)

αi − αj
= φ(σ)φ(τ).

Moreover, φ isn’t the trivial homomorphism, since φ
(
(1 2)

)
= −1. Part (e) immediately

implies that φ = sgn as claimed.

2.4 The goal of this exercise is to calculate the Galois group of f(x) := x4 − 2. Denote the roots of f as
follows:

α1 :=
4
√
2 α2 := i

4
√
2 α3 := − 4

√
2 α4 := −i

4
√
2

(a) Explain why (1 2) isn’t an element of Gal(f). [Find a rational relation which isn’t invariant under
this permutation.]

The transposition (1 2) does not preserve the rational relation α1 + α3 = 0.

(b) List all elements of Gal(f).

Writing f(x) = (x− α1)(x− α2)(x− α3)(x− α4) and expanding, we deduce four equations

α1 + α2 + α3 + α4 = 0∑
i<j

αiαj = 0

∑
i<j<k

αiαjαk = 0

α1α2α3α4 = −2

Four equations, four variables—it seems like we’re done! But these aren’t a great set of
relations, because they are too generic; they imply that the αi are completely symmetric,
which is not the case. For example, α1 + α3 = 0 but α1 + α2 ̸= 0, but good luck deducing
this from the above!

continued on next page...
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Some playing around should convince you that the four rational relations

α1 + α3 = 0

α2 + α4 = 0

α1α3 + α2α4 = 0

α1α2α3α4 = −2

suffice to generate all rational relations among the roots. This yields the following Galois
group:

Gal(f) = {(), (1 3), (2 4), (1 3)(2 4), (1 2)(3 4), (1 4)(2 3), (1 2 3 4), (1 4 3 2)}.

Notes. You might have started to wonder when exactly you can be sure you have derived
all the symmetry constraints. You were not expected to be able to show this rigorously
when solving this problem. As you will see, when we approach this more abstractly, we will
be able to use our knowledge of the subgroup structure of symmetry groups (along with
other group-theoretic information) to narrow down the possible subgroup candidates for the
Galois group. But even in the more sophisticated approach, there is no simple mechanical
algorithm.

(c) Gal(f) is isomorphic to a familiar group. Which one?

Gal(f) ≃ D8, the dihedral group of order 8. (See problem 2.3(d) above.)

(d) Denote G0 := Gal(f), and set Gi := [Gi−1, Gi−1] for all i. Does this sequence terminate? Explain
why the Galois theoretic prediction agrees with what you know about the shape of the roots.

Write D8 = ⟨r, f : r4 = f2 = e, fr = r3f⟩. Then we have G1 := [D8, D8] = {e, r2}. Since
this is abelian, it follows that G2 := [G1, G1] is trivial. Galois theory therefore predicts that
the roots should have one radical nested inside another, which is consistent with what we
know about the roots: they are all of the form 4

√
q =

√√
q for some q ∈ Q.

2.5 The goal of this exercise is to prove

Cayley’s Theorem. Every finite group can be embedded in a symmetric group.

Suppose G is a finite group. For each g ∈ G, define the function

ϕg : G −→ G

a 7−→ ga

(a) Prove that ϕg ∈ SG for every g ∈ G. Here SG denotes the symmetric group of G.

Note that ϕg is an injection, since if ga = ϕg(a) = ϕg(b) = gb then a = b. Since any injection
from a finite set to itself must be a bijection, we deduce that ϕg is bijective. It follows that
ϕg ∈ SG.
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(b) Let ϕ : G → SG be the function defined by ϕ(g) = ϕg. Prove that ϕ is an injective homomorphism.

First we show that ϕ is a homomorphism. Note that for any x, g, h ∈ G we have

(ϕg ◦ ϕh)(x) = ghx = ϕgh(x)

by associativity. Thus, ϕ(gh) = ϕgh = ϕg ◦ ϕh = ϕ(g) ◦ ϕ(h), which shows that ϕ is a
homomorphism.

Next we show that ϕ is injective. Suppose ϕ(g) = ϕ(h). Then ϕg(x) = ϕh(x) for all x ∈ G,
whence gx = hx. But this implies g = h. Thus ϕ is injective.

(c) Prove that if G has order n, then it is isomorphic to a subgroup of Sn.

Since ϕ : G → SG is an injective homomorphism, we deduce that G ≃ im ϕ, which is a
subgroup of SG. Finally, SG ≃ Sn, whence im ϕ is isomorphic to a subgroup of Sn.

Extra Credit. Find (with proof!) a minimal set of rational relations among the roots of f(x) = x4 − 5x2 + 6 that
generate all rational relations. (In other words, find a set of rational relations such that (a) none of them
can be derived from the others, and (b) every rational relation can be derived from them.)
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