Williams College
 Department of Mathematics and Statistics
 MATH 394 : GALOIS THEORY Solution Set 3

3.1 This problem is a review of the basic concepts from ring theory.
(a) Suppose R satisfies the definition of a ring, except that we drop the requirement that + is commutative. Prove that + must be commutative (so R is a ring, after all).
Applying left and right distributivity separately to expand $(1+1)(a+b)$ yields

$$
a+b+a+b=(1+1)(a+b)=a+a+b+b
$$

and the claim instantly follows.
(b) Suppose S is a subring of the ring R. Prove that $S^{\times} \leq R^{\times}$. [In applications of ring theory (e.g. to algebraic number theory) this is an extremely desirable property.]
It suffices to prove that $S^{\times} \leq R^{\times}$. Recall that to be a subring, the multiplicative identities of S and R must agree; let's call this identity 1. If $x \in S^{\times}$, then there exists $\bar{x} \in S^{\times}$such that $x \bar{x}=1$. But this implies that the same equality holds in R, whence $x \in R^{\times}$.
(c) Let $M_{2 \times 2}(\mathbb{R})$ denote the ring consisting of all 2×2 matrices with real entries. Find a subset $S \subseteq M_{2 \times 2}(\mathbb{R})$ such that S is a ring under the same addition and multiplication as $M_{2 \times 2}(\mathbb{R})$, but isn't a subring of $M_{2 \times 2}(\mathbb{R})$. Is $S^{\times} \leq M_{2 \times 2}(\mathbb{R})^{\times}$for your example?
Let $S:=\left\{\left(\begin{array}{cc}a & a \\ a & a\end{array}\right): a \in \mathbb{R}\right\}$.
This is easily checked to be a ring with multiplicative identity $\left(\begin{array}{ll}1 / 2 & 1 / 2 \\ 1 / 2 & 1 / 2\end{array}\right)$. This disagrees with identity element of $M_{2 \times 2}(\mathbb{R})$, which is $\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)$, so S cannot be a subring. Moreover, we easily see that

$$
S^{\times} \not \leq M_{2 \times 2}(\mathbb{R})
$$

since for example the identity element $\left(\begin{array}{ll}1 / 2 & 1 / 2 \\ 1 / 2 & 1 / 2\end{array}\right)$ of S has determinant 0 , hence cannot be a unit in $M_{2 \times 2}(\mathbb{R})$.
(d) Prove that the only ring homomorphism from \mathbb{Z}_{6} to itself is the identity map.

Let $\varphi: \mathbb{Z}_{6} \rightarrow \mathbb{Z}_{6}$ be a ring homomorphism. Then $\varphi(0)=0$ and $\varphi(1)=1$, whence

$$
\varphi(n)=\varphi(\underbrace{1+1+\cdots+1}_{n \text { times }})=\underbrace{\varphi(1)+\varphi(1)+\cdots+\varphi(1)}_{n \text { times }}=n .
$$

(e) Find all $\varphi: \mathbb{Z}_{6} \rightarrow \mathbb{Z}_{6}$ which preserve addition and multiplication.

Note that any such φ must satisfy $\varphi(0)=0$, since $\varphi(0)=\varphi(0+0)=\varphi(0)+\varphi(0)$. As in the previous part, since 1 generates \mathbb{Z}_{6} additively, the map φ is completely determined by where it sends 1 . Accordingly, any function $\mathbb{Z}_{6} \rightarrow \mathbb{Z}_{6}$ that preserves addition must be one of $\varphi_{0}, \varphi_{1}, \varphi_{2}, \ldots, \varphi_{5}$, where

$$
\begin{aligned}
\varphi_{n}: \mathbb{Z}_{6} & \longrightarrow \mathbb{Z}_{6} \\
a & \longmapsto \text { an }(\bmod 6) .
\end{aligned}
$$

If φ_{n} preserves multiplication, then

$$
n a b \equiv \varphi_{n}(a b)=\varphi_{n}(a) \varphi_{n}(b) \equiv n^{2} a b
$$

whence $n \equiv n^{2}(\bmod 6)$. This is easily seen to be satisfied iff $n=0,1,3,4$. Thus there are precisely four functions $\mathbb{Z}_{6} \rightarrow \mathbb{Z}_{6}$ that preserve both addition and multiplication: $\varphi_{0}, \varphi_{1}, \varphi_{3}$, and φ_{4}. (Only one of these - φ_{1}-is a ring homomorphism though.)
(f) Suppose $\varphi: R \rightarrow S$ is a ring homomorphism. Prove that φ restricted to R^{\times}is a group homomorphism from $R^{\times} \rightarrow S^{\times}$. Would this result still hold if we removed the requirement that $\varphi(1)=1$ from the definition of ring homomorphism?
It's clear that φ restricted to S^{\times}is a group homomorphism $S^{\times} \rightarrow R$, so it suffices to prove that $\varphi\left(S^{\times}\right) \subseteq R^{\times}$. If $x \in S^{\times}$then there exists $\bar{x} \in S^{\times}$such that $x \bar{x}=1$, whence $\varphi(x) \varphi(\bar{x})=\varphi(1)=1$; it instantly follows that $\varphi(x) \in R^{\times}$.

If we remove the condition that $\varphi(1)=1$, this is very false. For example, the constant zero $\operatorname{map} \varphi(n)=0$ trivially satisfies all the properties of a ring homomorphism apart from sending 1 to 1 , but the image of φ consists of 0 , which isn't a unit in R.
(g) Suppose $\varphi: R \rightarrow S$ is a ring homomorphism, and that $\operatorname{ker} \varphi$ is a subring of R . What can you conclude about the ring S ?
By definition of subring, we deduce that $1 \in \operatorname{ker} \varphi$, or in other words, that $\varphi(1)=0$. On the other hand, by definition of ring homomorphism, we know $\varphi(1)=1$. Thus $1=0$ in S, whence for any $n \in S$ we have $n=n \cdot 1=n \cdot 0=0$. In other words, $S=\{0\}$, the zero ring!
(h) Is \mathbb{Z} an ideal of \mathbb{R} (viewed as a ring)? Is \mathbb{Z} an ideal of \mathbb{Q} (viewed as a ring)?

No to both, because multiplication isn't 'swallowed': $1 \cdot \frac{1}{2} \in \mathbb{Z}$.
(i) Consider the set $I:=\{f \in \mathbb{Z}[t]: f(0)$ is even $\}$. Prove that I is an ideal of the ring $\mathbb{Z}[t]$, but not a principal ideal. Find a minimal set of generators of I.
Here's a generator: $(2, t)$. (Minimal because non-principal.)
3.2 Let K be a field.
(a) Prove that $0 x=0$ for all $x \in K$, and that $x y=0$ implies $x=0$ or $y=0$.

Evaluate $(0+0) x$ in two different ways. 2nd Q: WLOG say $x \neq 0$. Then $y=x^{-1} 0=0$
(b) Prove that char K must either be 0 or prime.

Given any $k \in \mathbb{Z}$, we define an element $\widehat{k} \in K$ by

$$
\widehat{k}:=\underbrace{1+1+\cdots+1}_{k \text { times }}
$$

(NOTE: this notation wasn't introduced in class!) Observe that $\widehat{k \ell}=\hat{k} \hat{\ell}$ for any $k, \ell \in \mathbb{Z}$. Now suppose char $K=n>0$; this implies $\hat{n}=0$. Writing $n=a b$ with a, b positive integers, we find

$$
0=\hat{n}=\hat{a} \hat{b}
$$

By part (a), this means one of \hat{a} or \hat{b} is zero. In particular, if both a and b are smaller than n this would contradict the minimality of the characteristic. Hence the only factorization of n must be the trivial one, i.e. n must be prime.
(c) Given two fields K and K^{\prime}, prove that if char $K \neq$ char K^{\prime} then there's no embedding of K into K^{\prime}.

WLOG say $n:=$ char $K>$ char K^{\prime}. Suppose $\varphi: K \rightarrow K^{\prime}$ is a homomorphism. Then prove that $\varphi(0)=0$ and $\varphi(1)=1$. But this implies that $\varphi(\hat{n})=0=\varphi(0)$, whence φ cannot be injective.
(d) Give an example of two non-isomorphic fields that have the same characteristic.
char $\mathbb{Q}=$ char \mathbb{R}, but there's no bijection between \mathbb{Q} and \mathbb{R}, hence no isomorphism either.
3.3 Given a field K, define P_{K} to be the intersection of all subfields of K.
(a) Prove that P_{K} is a field.

Straightforward verification.
(b) If char $K=0$, then P_{K} is isomorphic to a familiar field. Which one? Prove it.
\mathbb{Q}
(c) If char $K=p$, then P_{K} is isomorphic to a familiar field. Which one? Prove it.
\mathbb{Z}_{p} aka \mathbb{F}_{p}.

