Instructor: Leo Goldmakher

Williams College Department of Mathematics and Statistics

MATH 394 : GALOIS THEORY

Solution Set 3

- 3.1 This problem is a review of the basic concepts from ring theory.
 - (a) Suppose R satisfies the definition of a ring, except that we drop the requirement that + is commutative. Prove that + must be commutative (so R is a ring, after all).

Applying left and right distributivity separately to expand (1+1)(a+b) yields

$$a + b + a + b = (1 + 1)(a + b) = a + a + b + b$$

and the claim instantly follows.

(b) Suppose S is a subring of the ring R. Prove that $S^{\times} \leq R^{\times}$. [In applications of ring theory (e.g. to algebraic number theory) this is an extremely desirable property.]

It suffices to prove that $S^{\times} \leq R^{\times}$. Recall that to be a subring, the multiplicative identities of S and R must agree; let's call this identity 1. If $x \in S^{\times}$, then there exists $\overline{x} \in S^{\times}$ such that $x\overline{x} = 1$. But this implies that the same equality holds in R, whence $x \in R^{\times}$.

(c) Let $M_{2\times 2}(\mathbb{R})$ denote the ring consisting of all 2×2 matrices with real entries. Find a subset $S \subseteq M_{2\times 2}(\mathbb{R})$ such that S is a ring under the same addition and multiplication as $M_{2\times 2}(\mathbb{R})$, but isn't a subring of $M_{2\times 2}(\mathbb{R})$. Is $S^{\times} \leq M_{2\times 2}(\mathbb{R})^{\times}$ for your example?

$$S := \left\{ \begin{pmatrix} a & a \\ a & a \end{pmatrix} : a \in \mathbb{R} \right\}$$

This is easily checked to be a ring with multiplicative identity $\begin{pmatrix} 1/2 & 1/2 \\ 1/2 & 1/2 \end{pmatrix}$. This disagrees with identity element of $M_{2\times 2}(\mathbb{R})$, which is $\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$, so S cannot be a subring. Moreover, we easily see that $S^{\times} \leq M_{2\times 2}(\mathbb{R})$,

since for example the identity element $\begin{pmatrix} 1/2 & 1/2 \\ 1/2 & 1/2 \end{pmatrix}$ of S has determinant 0, hence cannot be a unit in $M_{2\times 2}(\mathbb{R})$.

(d) Prove that the only ring homomorphism from \mathbb{Z}_6 to itself is the identity map.

Let $\varphi : \mathbb{Z}_6 \to \mathbb{Z}_6$ be a ring homomorphism. Then $\varphi(0) = 0$ and $\varphi(1) = 1$, whence

$$\varphi(n) = \varphi(\underbrace{1+1+\dots+1}_{n \text{ times}}) = \underbrace{\varphi(1) + \varphi(1) + \dots + \varphi(1)}_{n \text{ times}} = n.$$

(e) Find all $\varphi : \mathbb{Z}_6 \to \mathbb{Z}_6$ which preserve addition and multiplication.

Note that any such φ must satisfy $\varphi(0) = 0$, since $\varphi(0) = \varphi(0+0) = \varphi(0) + \varphi(0)$. As in the previous part, since 1 generates \mathbb{Z}_6 additively, the map φ is completely determined by where it sends 1. Accordingly, any function $\mathbb{Z}_6 \to \mathbb{Z}_6$ that preserves addition must be one of $\varphi_0, \varphi_1, \varphi_2, \ldots, \varphi_5$, where

$$\varphi_n : \mathbb{Z}_6 \longrightarrow \mathbb{Z}_6$$
$$a \longmapsto an \pmod{6}$$

If φ_n preserves multiplication, then

$$nab \equiv \varphi_n(ab) = \varphi_n(a)\varphi_n(b) \equiv n^2 ab,$$

whence $n \equiv n^2 \pmod{6}$. This is easily seen to be satisfied iff n = 0, 1, 3, 4. Thus there are precisely four functions $\mathbb{Z}_6 \to \mathbb{Z}_6$ that preserve both addition and multiplication: $\varphi_0, \varphi_1, \varphi_3$, and φ_4 . (Only one of these— φ_1 —is a ring homomorphism though.)

(f) Suppose $\varphi : R \to S$ is a ring homomorphism. Prove that φ restricted to R^{\times} is a group homomorphism from $R^{\times} \to S^{\times}$. Would this result still hold if we removed the requirement that $\varphi(1) = 1$ from the definition of ring homomorphism?

It's clear that φ restricted to S^{\times} is a group homomorphism $S^{\times} \to R$, so it suffices to prove that $\varphi(S^{\times}) \subseteq R^{\times}$. If $x \in S^{\times}$ then there exists $\overline{x} \in S^{\times}$ such that $x\overline{x} = 1$, whence $\varphi(x)\varphi(\overline{x}) = \varphi(1) = 1$; it instantly follows that $\varphi(x) \in R^{\times}$.

If we remove the condition that $\varphi(1) = 1$, this is very false. For example, the constant zero map $\varphi(n) = 0$ trivially satisfies all the properties of a ring homomorphism apart from sending 1 to 1, but the image of φ consists of 0, which isn't a unit in R.

(g) Suppose $\varphi : R \to S$ is a ring homomorphism, and that ker φ is a subring of R. What can you conclude about the ring S?

By definition of *subring*, we deduce that $1 \in \ker \varphi$, or in other words, that $\varphi(1) = 0$. On the other hand, by definition of *ring homomorphism*, we know $\varphi(1) = 1$. Thus 1 = 0 in S, whence for any $n \in S$ we have $n = n \cdot 1 = n \cdot 0 = 0$. In other words, $S = \{0\}$, the zero ring!

- (h) Is \mathbb{Z} an ideal of \mathbb{R} (viewed as a ring)? Is \mathbb{Z} an ideal of \mathbb{Q} (viewed as a ring)? No to both, because multiplication isn't 'swallowed': $1 \cdot \frac{1}{2} \in \mathbb{Z}$.
- (i) Consider the set $I := \{f \in \mathbb{Z}[t] : f(0) \text{ is even}\}$. Prove that I is an ideal of the ring $\mathbb{Z}[t]$, but not a principal ideal. Find a minimal set of generators of I.

Here's a generator: (2, t). (Minimal because non-principal.)

3.2 Let K be a field.

(a) Prove that 0x = 0 for all $x \in K$, and that xy = 0 implies x = 0 or y = 0. Evaluate (0+0)x in two different ways. 2nd Q: WLOG say $x \neq 0$. Then $y = x^{-1}0 = 0$

(b) Prove that char K must either be 0 or prime.

Given any $k \in \mathbb{Z}$, we define an element $\hat{k} \in K$ by

$$\widehat{k} := \underbrace{1 + 1 + \dots + 1}_{k \text{ times}}$$

(NOTE: this notation wasn't introduced in class!) Observe that $\hat{k\ell} = \hat{k\ell}$ for any $k, \ell \in \mathbb{Z}$. Now suppose char K = n > 0; this implies $\hat{n} = 0$. Writing n = ab with a, b positive integers, we find

 $0 = \hat{n} = \hat{a}\hat{b}$

By part (a), this means one of \hat{a} or \hat{b} is zero. In particular, if both a and b are smaller than n this would contradict the minimality of the characteristic. Hence the only factorization of n must be the trivial one, i.e. n must be prime.

(c) Given two fields K and K', prove that if char $K \neq$ char K' then there's no embedding of K into K'.

WLOG say $n := \operatorname{char} K > \operatorname{char} K'$. Suppose $\varphi : K \to K'$ is a homomorphism. Then prove that $\varphi(0) = 0$ and $\varphi(1) = 1$. But this implies that $\varphi(\hat{n}) = 0 = \varphi(0)$, whence φ cannot be injective.

(d) Give an example of two non-isomorphic fields that have the same characteristic.

char $\mathbb{Q} = \operatorname{char} \mathbb{R}$, but there's no bijection between \mathbb{Q} and \mathbb{R} , hence no isomorphism either.

3.3 Given a field K, define P_K to be the intersection of all subfields of K.

(a) Prove that P_K is a field.

Straightforward verification.

(b) If char K = 0, then P_K is isomorphic to a familiar field. Which one? Prove it.

Q

(c) If char K = p, then P_K is isomorphic to a familiar field. Which one? Prove it.

 \mathbb{Z}_p aka \mathbb{F}_p .