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4.1 The goal of this problem is to prove that every ideal of K[t] is principal. Throughout, let I denote an

ideal of K[t] such that {0} ⊊ I ⊊ K[t].

(a) Among all nonzero elements of I, suppose p has minimal degree. (This must exist by the well-
ordering of N.) Prove that I ⊆ ⟨p⟩. [You may freely assume the quotient-remainder theorem stated
in Lecture 6.]

Pick f ∈ I. By the quotient-remainder theorem, there exist q, r ∈ Q[x] such that

f = qp+ r

with deg r < deg p. Since I is an ideal and p ∈ I, we must have qp ∈ I as well, whence
r = f − qp ∈ I. But p has minimal degree in I, whence r = 0. It follows that any element
of I is a multiple of p, as claimed.

(b) Prove that I = ⟨p⟩.
Let p be as above. Since p ∈ I and I is an ideal, any multiple of p belongs to I, i.e. ⟨p⟩ ⊆ I.
Combining this with part (a) yields the claim.

4.2 We explore the structure of finite fields.

(a) Consider the field F7 with 7 elements. Is it a cyclic group under +? Is F×
7 a cyclic group under ×?

Justify your answers.

F7 as a group under + is generated by 1, so it’s cyclic. And F×
7 is generated by 3 under

multiplication, so it’s also cyclic.

(b) Consider the field L := F3[t]/⟨t2 + 1⟩ that we constructed in Lecture 7. Is it a cyclic group under
+? Is L× a cyclic group under ×? Justify your answers.

Consider the addition and multiplication tables for L:

+ 0 1 2 t t+ 1 t+ 2 2t 2t+ 1 2t+ 2

0 0 1 2 t t+ 1 t+ 2 2t 2t+ 1 2t+ 2
1 1 2 0 t+ 1 t+ 2 t 2t+ 1 2t+ 2 2t
2 2 0 1 t+ 2 t t+ 1 2t+ 2 2t 2t+ 1
t t t+ 1 t+ 2 2t 2t+ 1 2t+ 2 0 1 2

t+ 1 t+ 1 t+ 2 t 2t+ 1 2t+ 2 2t 1 2 0
t+ 2 t+ 2 t t+ 1 2t+ 2 2t 2t+ 1 2 0 1
2t 2t 2t+ 1 2t+ 2 0 1 2 t t+ 1 t+ 2

2t+ 1 2t+ 1 2t+ 2 2t 1 2 0 t+ 1 t+ 2 t
2t+ 2 2t+ 2 2t 2t+ 1 2 0 1 t+ 2 t t+ 1

Addition table for L = F3[t]/⟨t2 + 1⟩
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× 1 2 t t+ 1 t+ 2 2t 2t+ 1 2t+ 2

1 1 2 t t+ 1 t+ 2 2t 2t+ 1 2t+ 2
2 2 1 2t 2t+ 2 2t+ 1 t t+ 2 t+ 1
t t 2t 2 t+ 2 2t+ 2 1 t+ 1 2t+ 1

t+ 1 t+ 1 2t+ 2 t+ 2 2t 1 2t+ 1 2 t
t+ 2 t+ 2 2t+ 1 2t+ 2 1 t t+ 1 2t 2
2t 2t t 1 2t+ 1 t+ 1 2 2t+ 2 t+ 2

2t+ 1 2t+ 1 t+ 2 t+ 1 2 2t 2t+ 2 t 1
2t+ 2 2t+ 2 t+ 1 2t+ 1 t 2 t+ 2 1 2t

Multiplication table for L = F3[t]/⟨t2 + 1⟩

� L is not cyclic under +. Any element of L is of the form at + b where a, b ∈ F3,
hence has order at most 3. It follows that none of the elements of L can generate all of
L under +. (In fact, from Lagrange’s theorem we deduce that every element has order
3 with the exception of the element 0.)

� L× is cyclic under ×. We can compute the orders of all the elements directly from
the multiplication table:

element of L× order under ×
1 1
2 2
t 4

t+ 1 8
t+ 2 8
2t 4

2t+ 1 8
2t+ 2 8

From this table we see that L× is cyclic, since (for example) t+1 generates the group.

(c) Write down a multiplication table for the field F := F2/⟨x2 + x+ 1⟩. Is it a cyclic group under +?
Is F× a cyclic group under ×? Justify your answers.

Note that any quadratic polynomial in F2[x] can be reduced to a linear polynomial in F by
subtracting x2 + x+ 1. Thus, F consists of the four elements ax+ b with a, b ∈ F2. Each of
these elements has order ≤ 2 under +, so F isn’t cyclic under +.

Under multiplication, F× must be cyclic, since it’s a group of prime order (namely, 3). Here’s
a multiplication table:

× 1 x x+ 1

1 1 x x+ 1
x x x+ 1 1

x+ 1 x+ 1 1 x

Multiplication table for F2[x]/⟨x2 + x+ 1⟩
We see that both x and x+ 1 generate F×.
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4.3 The goal of this problem is to prove that all rational roots of a monic polynomial P ∈ Z[x] must be
integers. For concreteness, let d := degP , and suppose α is a rational root of P that isn’t an integer.

(a) Let S := {n ∈ Z>0 : nα, nα2, . . . , nαd−1 ∈ Z}. Explain why S ̸= ∅.

If α ∈ Q, then αk ∈ Q for all positive integers k. Taking the product of all the denominators
of α, α2, . . . , αd−1 produces an element of S.

(b) Suppose P (β) = 0. Prove that for any positive integer k, βk can be expressed as a Z-linear
combination of 1, β, β2, . . . , βd−1.

Since P is monic of degree d, we can write P (x) = xd + ad−1x
d−1 + · · · + a2x

2 + a1x + a0
with all the ai ∈ Z. Thus

βd = −ad−1β
d−1 − · · · − a2β

2 − a1β − a0.

Having established a base case, we can proceed by induction: for any k > d, the above
equation implies

βk = −ad−1β
k−1 − · · · − a2β

k−d+2 − a1β
k−d+1 − a0β

k−d,

and since all the powers of β on the RHS are strictly less than k, we may assume they can
all be expressed as a Z-linear combination of 1, β, β2, . . . , βd−1.

(c) Given n ∈ S, construct n′ ∈ S such that n′ < n. [Hint. Use that 0 < α− ⌊α⌋ < 1.]

Given n ∈ S, set
n′ := n(α− ⌊α⌋)d−1.

Clearly 0 < n′ < n; I claim that n′ ∈ S. To prove this, it suffices to show that n′αk ∈ Z for
all integers k ≥ 0.

Write
(α− ⌊α⌋)d−1 = αd−1 + bd−1α

d−2 + · · ·+ b1α+ b0,

where all the bi ∈ Z. Then

n′αk = n(αd+k−1 + bd+k−1α
d+k−2 + · · ·+ b1α

k+1 + b0α
k)

= n(c0 + c1α+ c2α
2 + · · ·+ cd−1α

d−1) with all ci ∈ Z, by part (b)

= c0n+ c1nα+ c2nα
2 + · · ·+ cd−1nα

d−1.

Since n ∈ S, each term of the above is an integer, whence n′αk ∈ Z for all k ≥ 0.

(d) In one sentence, explain the contradiction.

S is a nonempty set of positive integers, but part (c) shows it has no least element, contra-
dicting the well-ordering property.

4.4 In class we showed that for any f ∈ Q[x] there must exist some α ∈ Q>0 such that αf ∈ Z[x] is primitive.
Prove that this α is unique.

Suppose g := αf and h := βf are both primitive, where α, β ∈ Q>0. Write α
β = k

ℓ with

k, ℓ ∈ Z>0. Then g(x) = k
ℓ h(x). Since the coefficients of kh(x) have gcd k, and g ∈ Z[x], we

deduce ℓ | k. By the same logic applied to h(x) = ℓ
kg(x), we deduce k | ℓ. It follows that

k = ℓ, whence α = β.
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4.5 Prove that the product of two primitive polynomials is primitive.

Given f, g ∈ Z[x] such that

f(x)g(x) = c0 + c1x+ c2x
2 + · · ·+ cmxm

isn’t primitive. Then there must exist some prime p that divides all the ck, whence

f(x)g(x) = 0

in Fp. (Here, as usual, f denotes the reduction of f (mod p) and g the reduction of
g (mod p).)

Lemma. If a, b ∈ K[x] where K is a field and ab = 0, then either a = 0 or b = 0.

It follows that either f = 0 or g = 0. But this means that either all of the coefficients of
f are multiples of p, or all coefficients of g are multiples of p; at least one of them is not
primitive. This concludes the proof.

4.6 We say a field K is algebraically closed iff every polynomial in K[x] has a root in K. (Later this semester,
we’ll use Galois theory to prove that C is algebraically closed.) Prove that ifK has finitely many elements,
it cannot be algebraically closed.

Say K has q elements. Then K× has q − 1 elements and is a group under ×, so Lagrange’s
theorem implies aq−1 = 1 for all a ∈ K×. It follows that aq = a for all a ∈ K, whence the
polynomial xq − x+ 1 has no roots in K.

4.7 The goal of this problem is to introduce a new irreducibility test.

(a) Prove that |f−1(k)| ≤ deg f for any nonconstant f ∈ Z[t]. [Here f−1(k) := {n ∈ Z : f(n) = k}.]
For any k ∈ Z, set gk(x) := f(x)− k and note that a ∈ f−1(k) iff gk(a) = 0. Thus |f−1(k)|
is bounded by the number of roots of gk in C, which is ≤ deg gk = deg f , as claimed.

(b) Given f ∈ Z[t], consider the set

Pf := {n ∈ Z : |f(n)| = 1 or prime}.

Suppose f is monic and non-constant. Prove that if |Pf | ≥ 2 deg(f) + 1 then f is irreducible over
Q.

Suppose f were reducible over Q. By Gauss’ Lemma, we may write f = gh for some
nonconstant polynomials g, h ∈ Z[t]. For any n ∈ Pf we have f(n) = ±1 or ±p for some
prime p, whence either g(n) = ±1 or h(n) = ±1. Thus,

|Pf | ≤ #{n ∈ Z : g(n) = ±1}+#{n ∈ Z : h(n) = ±1}.

By part (a), we deduce
|Pf | ≤ 2 deg g + 2deg h = 2deg f

contradicting the hypothesis.

(c) Use the above to prove that x4 − 2x3 + 9x− 1 is irreducible over Q.

It can be manually verified that magnitude of the polynomial is 1 or prime for all 9 integer
inputs of magnitude ≤ 4. By part (b) we conclude that the polynomial must be irreducible.
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4.8 We’ve discussed seven irreducibility tests (including the one above). Try to use each of these to determine
irreducibility of the following polynomials over Q. If a test doesn’t work, briefly described what you tried
to make it work.

(a) f(x) = 1 + x+ x2 + x3 + x4

Rational root test. This tells us the only potential rational roots are ±1, neither of which
is a root of f . Thus if f factors over Q, it must be into the product of two quadratics.

Reduction to Z. From above, we know that if f is reducible, then any factorization of f
over Q must be into two quadratics. We further know that we may make both of these have
coefficients in Z. Write

f(x) = (x2 + ax+ b)(x2 + cx+ d);

since f(0) = 1, we deduce b = d = ±1. Similarly, f(−1) = 1 implies (1−a+b)(1−c+d) = 1,
whence a = c. Finally, comparing linear coefficients implies 2ab = ad + bc = 1, which is
impossible. Thus, f must be irreducible.

Eisenstein. Note that f(x) = x5−1
x−1 , whence

f(x+ 1) =
(x+ 1)5 − 1

x
= x4 + 5x3 + 10x2 + 10x+ 5.

By Eisenstein at 5, this is irreducible, so f(x) must be as well.

Reduction (mod p). Note that f is its own reduction (mod 2). I claim it’s irreducible
over F2. First, it clearly has no roots in F2, so if it factors it must factor as two quadratics:

1 + x+ x2 + x3 + x4 = (x2 + ax+ 1)(x2 + cx+ 1)

over F2. Note that x2 + 1 is reducible over F2, whence a = c = 1. But the linear term of
(x2 + x+ 1)2 is 0, not 1!

Perron’s test. I’d love to hear whether you discovered a clever way to apply this!

Schur’s test. I’d love to hear whether you discovered a clever way to apply this!

Lots of prime outputs? We apply the test from the previous problem. It can be checked
that f(x) = 1 for x = 0,−1, and prime for x = 1,±2,−3,−5, 7, 12. These nine values
guarantee that f is irreducible.

(b) g(x) = x4 − 2x3 + 9x− 1

Similar.
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