Instructor: Leo Goldmakher

Williams College Department of Mathematics and Statistics

MATH 394 : GALOIS THEORY

Solution Set 4

- **4.1** The goal of this problem is to prove that every ideal of K[t] is principal. Throughout, let I denote an ideal of K[t] such that $\{0\} \subsetneq I \subsetneq K[t]$.
 - (a) Among all nonzero elements of I, suppose p has minimal degree. (This must exist by the wellordering of \mathbb{N} .) Prove that $I \subseteq \langle p \rangle$. [You may freely assume the quotient-remainder theorem stated in Lecture 6.]

Pick $f \in I$. By the quotient-remainder theorem, there exist $q, r \in \mathbb{Q}[x]$ such that

f = qp + r

with deg $r < \deg p$. Since I is an ideal and $p \in I$, we must have $qp \in I$ as well, whence $r = f - qp \in I$. But p has minimal degree in I, whence r = 0. It follows that any element of I is a multiple of p, as claimed.

(b) Prove that $I = \langle p \rangle$.

Let p be as above. Since $p \in I$ and I is an ideal, any multiple of p belongs to I, i.e. $\langle p \rangle \subseteq I$. Combining this with part (a) yields the claim.

- 4.2 We explore the structure of finite fields.
 - (a) Consider the field \mathbb{F}_7 with 7 elements. Is it a cyclic group under +? Is \mathbb{F}_7^{\times} a cyclic group under \times ? Justify your answers.

 \mathbb{F}_7 as a group under + is generated by 1, so it's cyclic. And \mathbb{F}_7^{\times} is generated by 3 under multiplication, so it's also cyclic.

(b) Consider the field $L := \mathbb{F}_3[t]/\langle t^2 + 1 \rangle$ that we constructed in Lecture 7. Is it a cyclic group under +? Is L^{\times} a cyclic group under \times ? Justify your answers.

Consider the addition and multiplication tables for L :										
	+	0	1	2	t	t+1	t+2	2t	2t + 1	2t + 2
	0	0	1	2	t	t+1	t+2	2t	2t + 1	2t + 2
	1	1	2	0	t+1	t+2	t	2t + 1	2t + 2	2t
	2	2	0	1	t+2	t	t+1	2t + 2	2t	2t + 1
	t	t	t+1	t+2	2t	2t + 1	2t + 2	0	1	2
	t+1	t+1	t+2	t	2t + 1	2t + 2	2t	1	2	0
	t+2	t+2	t	t+1	2t + 2	2t	2t + 1	2	0	1
	2t	2t	2t + 1	2t + 2	0	1	2	t	t+1	t+2
	2t + 1	2t + 1	2t + 2	2t	1	2	0	t+1	t+2	t
	2t+2	2t + 2	2t	2t + 1	2	0	1	t+2	t	t+1
	Addition table for $L = \mathbb{F}_3[t]/\langle t^2 + 1 angle$									

continued on next page...

X		1	2	t	t+1	t+2	2t	2t + 1	2t + 2
1		1	2	t	t+1	t+2	2t	2t + 1	2t + 2
2		2	1	2t	2t + 2	2t + 1	t	t+2	t+1
t		t	2t	2	t+2	2t + 2	1	t+1	2t + 1
t+1	L	t+1	2t + 2	t+2	2t	1	2t + 1	2	t
t+2	2	t+2	2t + 1	2t + 2	1	t	t+1	2t	2
2t		2t	t	1	2t + 1	t+1	2	2t + 2	t+2
2t +	1	2t + 1	t+2	t+1	2	2t	2t + 2	t	1
2t +	2	2t + 2	t+1	2t + 1	t	2	t+2	1	2t

Multiplication table for $L = \mathbb{F}_3[t]/\langle t^2 + 1 \rangle$

- L is not cyclic under +. Any element of L is of the form at + b where $a, b \in \mathbb{F}_3$, hence has order at most 3. It follows that none of the elements of L can generate all of L under +. (In fact, from Lagrange's theorem we deduce that every element has order 3 with the exception of the element 0.)
- L^{\times} is cyclic under \times . We can compute the orders of all the elements directly from the multiplication table:

element of L^{\times}	order under \times
1	1
2	2
t	4
t+1	8
t+2	8
2t	4
2t + 1	8
2t+2	8

From this table we see that L^{\times} is cyclic, since (for example) t+1 generates the group.

(c) Write down a multiplication table for the field $F := \mathbb{F}_2/\langle x^2 + x + 1 \rangle$. Is it a cyclic group under +? Is F^{\times} a cyclic group under ×? Justify your answers.

Note that any quadratic polynomial in $\mathbb{F}_2[x]$ can be reduced to a linear polynomial in F by subtracting $x^2 + x + 1$. Thus, F consists of the four elements ax + b with $a, b \in \mathbb{F}_2$. Each of these elements has order ≤ 2 under +, so F isn't cyclic under +.

Under multiplication, F^{\times} must be cyclic, since it's a group of prime order (namely, 3). Here's a multiplication table:

	×	1	x	x+1	
	1	1	x	x+1	
	x	x	x+1	1	
	x+1	x+1	1	x	
Mult	iplicatio	n table f	or $\mathbb{F}_2[x]$	$/\langle x^2 + x \rangle$	$+1\rangle$
that both x and $x + 1$	generat	$e F^{\times}$.			

We see

- **4.3** The goal of this problem is to prove that all rational roots of a monic polynomial $P \in \mathbb{Z}[x]$ must be integers. For concreteness, let $d := \deg P$, and suppose α is a rational root of P that isn't an integer.
 - (a) Let $S := \{n \in \mathbb{Z}_{>0} : n\alpha, n\alpha^2, \dots, n\alpha^{d-1} \in \mathbb{Z}\}$. Explain why $S \neq \emptyset$. If $\alpha \in \mathbb{Q}$, then $\alpha^k \in \mathbb{Q}$ for all positive integers k. Taking the product of all the denominators of $\alpha, \alpha^2, \dots, \alpha^{d-1}$ produces an element of S.
 - (b) Suppose $P(\beta) = 0$. Prove that for any positive integer k, β^k can be expressed as a \mathbb{Z} -linear combination of $1, \beta, \beta^2, \ldots, \beta^{d-1}$.

Since P is monic of degree d, we can write $P(x) = x^d + a_{d-1}x^{d-1} + \cdots + a_2x^2 + a_1x + a_0$ with all the $a_i \in \mathbb{Z}$. Thus

$$\beta^d = -a_{d-1}\beta^{d-1} - \dots - a_2\beta^2 - a_1\beta - a_0.$$

Having established a base case, we can proceed by induction: for any k > d, the above equation implies

 $\beta^{k} = -a_{d-1}\beta^{k-1} - \dots - a_{2}\beta^{k-d+2} - a_{1}\beta^{k-d+1} - a_{0}\beta^{k-d},$

and since all the powers of β on the RHS are strictly less than k, we may assume they can all be expressed as a \mathbb{Z} -linear combination of $1, \beta, \beta^2, \ldots, \beta^{d-1}$.

(c) Given $n \in S$, construct $n' \in S$ such that n' < n. [*Hint. Use that* $0 < \alpha - \lfloor \alpha \rfloor < 1$.]

Given $n \in S$, set

$$n' := n(\alpha - |\alpha|)^{d-1}$$

Clearly 0 < n' < n; I claim that $n' \in S$. To prove this, it suffices to show that $n'\alpha^k \in \mathbb{Z}$ for all integers $k \ge 0$.

Write

$$(\alpha - \lfloor \alpha \rfloor)^{d-1} = \alpha^{d-1} + b_{d-1}\alpha^{d-2} + \dots + b_1\alpha + b_0,$$

where all the $b_i \in \mathbb{Z}$. Then

$$n'\alpha^{k} = n(\alpha^{d+k-1} + b_{d+k-1}\alpha^{d+k-2} + \dots + b_{1}\alpha^{k+1} + b_{0}\alpha^{k})$$

= $n(c_{0} + c_{1}\alpha + c_{2}\alpha^{2} + \dots + c_{d-1}\alpha^{d-1})$ with all $c_{i} \in \mathbb{Z}$, by part (b)
= $c_{0}n + c_{1}n\alpha + c_{2}n\alpha^{2} + \dots + c_{d-1}n\alpha^{d-1}$.

Since $n \in S$, each term of the above is an integer, whence $n'\alpha^k \in \mathbb{Z}$ for all $k \ge 0$.

(d) In one sentence, explain the contradiction.

S is a nonempty set of positive integers, but part (c) shows it has no least element, contradicting the well-ordering property.

4.4 In class we showed that for any $f \in \mathbb{Q}[x]$ there must exist some $\alpha \in \mathbb{Q}_{>0}$ such that $\alpha f \in \mathbb{Z}[x]$ is primitive. Prove that this α is unique.

Suppose $g := \alpha f$ and $h := \beta f$ are both primitive, where $\alpha, \beta \in \mathbb{Q}_{>0}$. Write $\frac{\alpha}{\beta} = \frac{k}{\ell}$ with $k, \ell \in \mathbb{Z}_{>0}$. Then $g(x) = \frac{k}{\ell}h(x)$. Since the coefficients of kh(x) have gcd k, and $g \in \mathbb{Z}[x]$, we deduce $\ell \mid k$. By the same logic applied to $h(x) = \frac{\ell}{k}g(x)$, we deduce $k \mid \ell$. It follows that $k = \ell$, whence $\alpha = \beta$.

4.5 Prove that the product of two primitive polynomials is primitive.

Given $f, g \in \mathbb{Z}[x]$ such that

 $f(x)g(x) = c_0 + c_1x + c_2x^2 + \dots + c_mx^m$

isn't primitive. Then there must exist some prime p that divides all the c_k , whence

 $\overline{f}(x)\overline{g}(x) = 0$

in \mathbb{F}_p . (Here, as usual, \overline{f} denotes the reduction of $f \pmod{p}$ and \overline{g} the reduction of $g \pmod{p}$.)

Lemma. If $a, b \in K[x]$ where K is a field and ab = 0, then either a = 0 or b = 0.

It follows that either $\overline{f} = 0$ or $\overline{g} = 0$. But this means that either all of the coefficients of f are multiples of p, or all coefficients of g are multiples of p; at least one of them is not primitive. This concludes the proof.

4.6 We say a field K is algebraically closed iff every polynomial in K[x] has a root in K. (Later this semester, we'll use Galois theory to prove that \mathbb{C} is algebraically closed.) Prove that if K has finitely many elements, it cannot be algebraically closed.

Say K has q elements. Then K^{\times} has q-1 elements and is a group under \times , so Lagrange's theorem implies $a^{q-1} = 1$ for all $a \in K^{\times}$. It follows that $a^q = a$ for all $a \in K$, whence the polynomial $x^q - x + 1$ has no roots in K.

- 4.7 The goal of this problem is to introduce a new irreducibility test.
 - (a) Prove that $|f^{-1}(k)| \leq \deg f$ for any nonconstant $f \in \mathbb{Z}[t]$. [Here $f^{-1}(k) := \{n \in \mathbb{Z} : f(n) = k\}$.] For any $k \in \mathbb{Z}$, set $g_k(x) := f(x) - k$ and note that $a \in f^{-1}(k)$ iff $g_k(a) = 0$. Thus $|f^{-1}(k)|$ is bounded by the number of roots of g_k in \mathbb{C} , which is $\leq \deg g_k = \deg f$, as claimed.
 - (b) Given $f \in \mathbb{Z}[t]$, consider the set

$$P_f := \{ n \in \mathbb{Z} : |f(n)| = 1 \text{ or prime} \}.$$

Suppose f is monic and non-constant. Prove that if $|P_f| \ge 2 \deg(f) + 1$ then f is irreducible over \mathbb{Q} .

Suppose f were reducible over \mathbb{Q} . By Gauss' Lemma, we may write f = gh for some nonconstant polynomials $g, h \in \mathbb{Z}[t]$. For any $n \in P_f$ we have $f(n) = \pm 1$ or $\pm p$ for some prime p, whence either $g(n) = \pm 1$ or $h(n) = \pm 1$. Thus,

$$|P_f| \le \#\{n \in \mathbb{Z} : g(n) = \pm 1\} + \#\{n \in \mathbb{Z} : h(n) = \pm 1\}.$$

By part (a), we deduce

 $|P_f| \le 2\deg g + 2\deg h = 2\deg f$

contradicting the hypothesis.

(c) Use the above to prove that $x^4 - 2x^3 + 9x - 1$ is irreducible over \mathbb{Q} .

It can be manually verified that magnitude of the polynomial is 1 or prime for all 9 integer inputs of magnitude ≤ 4 . By part (b) we conclude that the polynomial must be irreducible.

- **4.8** We've discussed seven irreducibility tests (including the one above). Try to use each of these to determine irreducibility of the following polynomials over Q. If a test doesn't work, briefly described what you tried to make it work.
 - (a) $f(x) = 1 + x + x^2 + x^3 + x^4$

Rational root test. This tells us the only potential rational roots are ± 1 , neither of which is a root of f. Thus if f factors over \mathbb{Q} , it must be into the product of two quadratics.

Reduction to \mathbb{Z} . From above, we know that if f is reducible, then any factorization of f over \mathbb{Q} must be into two quadratics. We further know that we may make both of these have coefficients in \mathbb{Z} . Write

$$f(x) = (x^{2} + ax + b)(x^{2} + cx + d);$$

since f(0) = 1, we deduce $b = d = \pm 1$. Similarly, f(-1) = 1 implies (1-a+b)(1-c+d) = 1, whence a = c. Finally, comparing linear coefficients implies 2ab = ad + bc = 1, which is impossible. Thus, f must be irreducible.

Eisenstein. Note that $f(x) = \frac{x^5 - 1}{x - 1}$, whence

$$f(x+1) = \frac{(x+1)^5 - 1}{x} = x^4 + 5x^3 + 10x^2 + 10x + 5.$$

By Eisenstein at 5, this is irreducible, so f(x) must be as well.

Reduction (mod p). Note that f is its own reduction (mod 2). I claim it's irreducible over \mathbb{F}_2 . First, it clearly has no roots in \mathbb{F}_2 , so if it factors it must factor as two quadratics:

 $1 + x + x^{2} + x^{3} + x^{4} = (x^{2} + ax + 1)(x^{2} + cx + 1)$

over \mathbb{F}_2 . Note that $x^2 + 1$ is reducible over \mathbb{F}_2 , whence a = c = 1. But the linear term of $(x^2 + x + 1)^2$ is 0, not 1!

Perron's test. I'd love to hear whether you discovered a clever way to apply this!

Schur's test. I'd love to hear whether you discovered a clever way to apply this!

Lots of prime outputs? We apply the test from the previous problem. It can be checked that f(x) = 1 for x = 0, -1, and prime for $x = 1, \pm 2, -3, -5, 7, 12$. These nine values guarantee that f is irreducible.

(b) $g(x) = x^4 - 2x^3 + 9x - 1$

Similar.