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4.1 The goal of this problem is to prove that every ideal of K[t] is principal. Throughout, let I denote an
ideal of K[t] such that {0} C I C KTt].

(a) Among all nonzero elements of I, suppose p has minimal degree. (This must exist by the well-

ordering of N.) Prove that I C (p). [You may freely assume the quotient-remainder theorem stated
in Lecture 6.]

Pick f € I. By the quotient-remainder theorem, there exist ¢, € Q[z] such that

f=ap+r

with degr < degp. Since I is an ideal and p € I, we must have gp € I as well, whence
r=f —qp € I. But p has minimal degree in I, whence » = 0. It follows that any element
of I is a multiple of p, as claimed.

(b) Prove that I = (p).

Let p be as above. Since p € I and I is an ideal, any multiple of p belongs to I, i.e. (p) C I.
Combining this with part (a) yields the claim.

4.2 We explore the structure of finite fields.

(a) Consider the field F7 with 7 elements. Is it a cyclic group under +? Is F> a cyclic group under x?
Justify your answers.

F7 as a group under + is generated by 1, so it’s cyclic. And F5 is generated by 3 under
multiplication, so it’s also cyclic.

(b) Consider the field L := F3[t]/(t*> + 1) that we constructed in Lecture 7. Is it a cyclic group under
+7 Is L™ a cyclic group under x? Justify your answers.

Consider the addition and multiplication tables for L:

+ o |1 |2 | ot [ t41 | t+2 ] 26 [2+1|26+2
0 0 1 2 t t+1 [ t+2 ] 2t [2t+1[2t+2
1 1 2 0 [ t+1 [ t+2 t | 2+1|26+2| 2t
2 2 0 1 t+2 t t+1 [2t+2] 2t [2t+1
t t t+1 t+2 2t 20+1 | 2t +2 0 1 2
t+1 [ t+1 | t42 t |2+1|26+2]| 2t 1 2 0
t+2 t+2 t t+1 | 2t+2 2t 2t +1 2 0 1
2t 2t | 26+1 [ 26+2]| 0 1 2 t t+1 | t+2
2t+1 [[2t+1[2t+2]| 2t 1 2 0 [ t+1 [ t+2 t
20+2 | 2642 2t [2t+1] 2 0 1 t+2 t t+1

Addition table for L = F3[t]/{t? + 1)

continued on next page...




x | 1 t t+1 | t42 | 2t | 241|242
1 1 2 t t+1 [ t+2 ] 2t [20+1]2t+2
2 2 1 2t [2t+2 2041 ¢ t+2 | t+1
t t 2t 2 t+2 [2t+2 ] 1 t4+1 [2t+1
t+1 | t+1 J2a+2] t42 [ 2 1 (241 2 t
t+2 [ t4+2 [2t+1 [ 24+2] 1 t t+1 | 2 2
2t 2t t 1241 t+1 2 |2+2] t+2
2041 [[ 2041 t+2 | t+1 2 2t [2t42] ¢ 1
204+2 | 2642 t+1 [ 2t+1] ¢ 2 t+2 1 2t

Multiplication table for L = F3[t]/(t? + 1)

e [ is not cyclic under +. Any element of L is of the form at + b where a,b € Fj,
hence has order at most 3. It follows that none of the elements of L can generate all of
L under +. (In fact, from Lagrange’s theorem we deduce that every element has order
3 with the exception of the element 0.)

e L* is cyclic under x. We can compute the orders of all the elements directly from
the multiplication table:

element of L™ | order under x

1 1

2

t
t+1
t+2
2t
2t+1
2t+2

Q0| QO | CO| CO| | DD

From this table we see that L* is cyclic, since (for example) ¢ + 1 generates the group.

Write down a multiplication table for the field F := Fo/(2? + 2 + 1). Is it a cyclic group under +?
Is F* a cyclic group under x? Justify your answers.

Note that any quadratic polynomial in Fy[z] can be reduced to a linear polynomial in F' by
subtracting 22 + = + 1. Thus, F consists of the four elements ax + b with a,b € F,. Each of
these elements has order < 2 under +, so F' isn’t cyclic under +.

Under multiplication, F'* must be cyclic, since it’s a group of prime order (namely, 3). Here’s
a multiplication table:

x || 1 | z Jz+1
1 1 T xr+1
T T r+1 1
z+1 || xz+1 1 T

Multiplication table for Folz]/{x? + x + 1)
We see that both = and = + 1 generate ['*.




4.3 The goal of this problem is to prove that all rational roots of a monic polynomial P € Z[z] must be
integers. For concreteness, let d := deg P, and suppose « is a rational root of P that isn’t an integer.

(a) Let S :={n € Zs¢ : na,na?,...,na?"! € Z}. Explain why S # @.

If o € Q, then o* € Q for all positive integers k. Taking the product of all the denominators
of a,a?,...,a% ! produces an element of S.

(b) Suppose P(3) = 0. Prove that for any positive integer k, ¥ can be expressed as a Z-linear
combination of 1,3, 52%,..., 3% 1.

Since P is monic of degree d, we can write P(z) = 2+ ag_ 2%+ asx? + arx + ag
with all the a; € Z. Thus

Bl =—aq_1B = —aaf® — a1 — ap.

Having established a base case, we can proceed by induction: for any k£ > d, the above
equation implies

BF = —aq 1Bt = = apBT I = BETT — g B

and since all the powers of S on the RHS are strictly less than k, we may assume they can
all be expressed as a Z-linear combination of 1, 3, 52,..., 8% 1.

(c) Given n € S, construct n’ € S such that n’ < n. [Hint. Use that 0 < o — |a| < 1]
Given n € S, set

n':=mn(a— o))t

Clearly 0 < n’ < n; I claim that n’ € S. To prove this, it suffices to show that n’a” € Z for
all integers k£ > 0.
Write
(a—la)Pt=a%t + by 1072+ 4 bra + by,
where all the b; € Z. Then
n'a? = n(a® 7 4 by 102 4 b o T 4 bga)
=n(co +cra+ o -+ cd_ladfl) with all ¢; € Z, by part (b)

= con + cina + czna2 + -4 cd_lnadfl.

Since n € S, each term of the above is an integer, whence n/a* € Z for all k > 0.

(d) In one sentence, explain the contradiction.

S is a nonempty set of positive integers, but part (¢) shows it has no least element, contra-
dicting the well-ordering property.

4.4 In class we showed that for any f € Q[z] there must exist some o € Q¢ such that af € Z[x] is primitive.
Prove that this « is unique.

Suppose g := «af and h := Sf are both primitive, where a, 8 € Q~q. Write % = % with

k,l € Z~o. Then g(z) = %h(z). Since the coefficients of kh(z) have ged k, and g € Z[z], we
deduce ¢ | k. By the same logic applied to h(z) = %g(m), we deduce k | £. Tt follows that
k = ¢, whence a = f3.




4.5 Prove that the product of two primitive polynomials is primitive.

Given f, g € Z[z] such that
f(@)g(z) =co+ 12+ com® + -+ + ™

isn’t primitive. Then there must exist some prime p that divides all the ¢, whence

f@)g(z) =0

in F,. (Here, as usual, f denotes the reduction of f (mod p) and g the reduction of
g (mod p).)

Lemma. Ifa,b € K[z] where K is a field and ab = 0, then either a =0 or b= 0.

It follows that either f = 0 or § = 0. But this means that either all of the coefficients of
f are multiples of p, or all coefficients of g are multiples of p; at least one of them is not
primitive. This concludes the proof.

4.6 We say a field K is algebraically closed iff every polynomial in K[z] has a root in K. (Later this semester,
we’ll use Galois theory to prove that C is algebraically closed.) Prove that if K has finitely many elements,
it cannot be algebraically closed.

Say K has ¢ elements. Then K* has ¢ — 1 elements and is a group under x, so Lagrange’s
theorem implies a9~! = 1 for all a € K*. It follows that a? = a for all a € K, whence the
polynomial 29 — x 4+ 1 has no roots in K.

4.7 The goal of this problem is to introduce a new irreducibility test.

(a) Prove that |f~1(k)| < deg f for any nonconstant f € Z[t]. [Here f~(k) :=={n € Z: f(n) = k}.]

For any k € Z, set gi(x) := f(x) — k and note that a € f~1(k) iff gr(a) = 0. Thus |f~ (k)]
is bounded by the number of roots of g in C, which is < deg g, = deg f, as claimed.

(b) Given f € Z[t], consider the set

Pr:={ne€Z:|f(n)] =1 or prime}.
Suppose f is monic and non-constant. Prove that if |Py| > 2deg(f) + 1 then f is irreducible over
Q.
Suppose f were reducible over Q. By Gauss’ Lemma, we may write f = gh for some

nonconstant polynomials g, h € Z[t]. For any n € P; we have f(n) = £1 or xp for some
prime p, whence either g(n) = +1 or h(n) = £1. Thus,

|Prl| <#{ne€Z:g(n)==x1} + #{n € Z: h(n) = £1}.

By part (a), we deduce
|Pr| <2degg+2degh =2deg f

contradicting the hypothesis.

(c) Use the above to prove that x* — 22% + 9z — 1 is irreducible over Q.

It can be manually verified that magnitude of the polynomial is 1 or prime for all 9 integer
inputs of magnitude < 4. By part (b) we conclude that the polynomial must be irreducible.




4.8 We've discussed seven irreducibility tests (including the one above). Try to use each of these to determine
irreducibility of the following polynomials over Q. If a test doesn’t work, briefly described what you tried
to make it work.

(a) f(z)=14+az+2%2+23+a2*

Rational root test. This tells us the only potential rational roots are +1, neither of which
is a root of f. Thus if f factors over Q, it must be into the product of two quadratics.

Reduction to Z. From above, we know that if f is reducible, then any factorization of f
over (Q must be into two quadratics. We further know that we may make both of these have
coefficients in Z. Write

f(z) = (2 + ax + b)(2® + cx + d);

since f(0) = 1, we deduce b = d = +1. Similarly, f(—1) = 1 implies (1—a+0b)(1—c+d) =1,
whence a = ¢. Finally, comparing linear coefficients implies 2ab = ad + bc = 1, which is
impossible. Thus, f must be irreducible.

Eisenstein. Note that f(z) = “;::117 whence

(x+1)° -1
T

flx+1)= = 2* 4 52% 4+ 1022 + 10z + 5.
By Eisenstein at 5, this is irreducible, so f(x) must be as well.

Reduction (mod p). Note that f is its own reduction (mod 2). I claim it’s irreducible
over Fy. First, it clearly has no roots in o, so if it factors it must factor as two quadratics:

4o+ 428+t =@ +ar+ 1) (2> +cx +1)

over 5. Note that 22 + 1 is reducible over Fy, whence a = ¢ = 1. But the linear term of
(2?2 + 2+ 1)? is 0, not 1!

Perron’s test. I'd love to hear whether you discovered a clever way to apply this!
Schur’s test. I'd love to hear whether you discovered a clever way to apply this!
Lots of prime outputs? We apply the test from the previous problem. It can be checked

that f(z) = 1 for z = 0,—1, and prime for x = 1,+2,—-3,—5,7,12. These nine values
guarantee that f is irreducible.

() g(z) =2* — 223+ 92 — 1

| Similar.




