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5.1 Prove that f(t) := 1 + t+ t2 + · · ·+ tn−1 is irreducible over Q iff n is prime.

Let f(t) := 1 + t+ t2 + · · ·+ tn−1. Since this is a geometric series, we can write

f(t) =
tn − 1

t− 1
.

If n = ab is composite, we see that

f(t) =
(ta)b − 1

t− 1
=

ta − 1

t− 1
· (1 + ta + t2a + · · ·+ ta(b−1))

= (1 + t+ t2 + · · ·+ ta−1)(1 + ta + t2a + · · ·+ ta(b−1)).

Else, if n is prime, we have

f(t+ 1) = tn−1 +

(
n

1

)
tn−2 +

(
n

2

)
tn−3 + · · ·+

(
n

n− 2

)
t+

(
n

n− 1

)
.

Applying Eisenstein at the prime n shows this is irreducible.

5.2 Let ω := e2πi/3. Show that Q(ω) = Q[ω].

There are (at least!) two approaches to this:

1. High-brow approach. We clearly have Q[ω] ⊆ Q(ω), so it suffices to prove the reverse
inclusion. With Kronecker’s theorem and some amount of work, one can show that
Q[ω] ≃ Q[t]/(t2 + t+ 1). Once this is done, the rest is easy: by Kronecker’s theorem we
deduce that Q[ω] must be a field. But by definition, Q(ω) is the smallest field containing
both Q and ω! QED.

2. Low-brow approach. We wish to show thatQ[ω] is a field. Since it’s already a commutative
ring, all that’s left is to show existence of multiplicative inverses. Recall that ω2+ω+1 = 0.
It follows that any polynomial in ω can be expressed in the form a+ bω. Thus it suffices to
prove that 1 + cω has an inverse in Q[ω]. Note that

1

1 + cω
=

1− cω + c2ω2

1 + c3
=

(1− c2)− (c+ c2)ω

1 + c3
∈ Q[ω].

[The easiest way to discover this is to expand the LHS by Taylor series. This isn’t a proof,
since convergence is an issue for some choices of c, but once one knows the answer, it’s easy
to prove it directly!]



5.3 Fun with quotients!

(a) Prove that Q[t]/⟨t3 − 2⟩ ≃ Q[ 3
√
2].

Step 1: prove that Q[t]/⟨t3 − 2⟩ = {[a+ bt+ ct2] : a, b, c ∈ Q}.

Step 2: prove that the map [a+ bt+ ct2] 7→ a+ b 3
√
2 + c 3

√
2
2
is an isomorphism.

(b) Prove that Q[ 3
√
2] = Q( 3

√
2). Do not use algebraic number theory! [Hint: you may find the identity

x3 + y3 = (x+ y)(x2 − xy + y2) useful.]

As in 5.2, there are two approaches.

1. High-brow approach. We know by Kronecker and part (a) that Q[ 3
√
2] must be a field,

and by inspection this field must contain both Q and 3
√
2. Thus, Q[ 3

√
2] ⊇ Q( 3

√
2). The

reverse containment is clear.

2. Low-brow approach. It’s easiest to proceed in stages:

Claim 1. Given x ∈ Q[ 3
√
2], there exists y ∈ Q[ 3

√
2] such that xy ∈ Q+ ( 3

√
2)2Q.

Proof. Factor out the constant term of x to get x/a = 1 + b 3
√
2 + c( 3

√
2)2 for some b, c ∈ Q.

Add and subtract (b 3
√
2)2. Then can multiply by 1− b 3

√
2 to deduce claim.

Claim 2. Given α ∈ Q+ ( 3
√
2)2Q there exists z ∈ Q[ 3

√
2] such that αz ∈ Q.

Proof. Factor out constant term of α to write α/r = 1+s( 3
√
2)2 with s ∈ Q. Set β := s( 3

√
2)2.

Then α/r · (1− β + β2) ∈ Q.

(c) Does there exist any α ∈ C such that Q[t]/⟨t3 − 2⟩ ≃ Q(α) but Q(α) ̸= Q( 3
√
2)? Prove.

Yes: α = ω 3
√
2.

(d) Are the two fields Q[t]/⟨t2 + 3⟩ and Q[t]/⟨t2 + 1⟩ isomorphic? Why or why not? Prove.

Nope. Both of these fields look like {[at + b] : a, b ∈ Q}, but the natural guess at an
isomorphism fails: if ϕ : Q[t]/(t2 + 3) → Q[t]/(t2 + 1) is defined by ϕ([at + b]) := [at + b],
then ϕ([9]) = ϕ([t]4) = [t]4 = [1] = ϕ([1]), so it isn’t injective.

But this doesn’t answer the question: it’s possible there exists some more complicated
isomorphism between the two spaces! Before excluding this possibility, we make a quick
shift to a more convenient viewpoint: one can prove that Q[t]/(t2 + 3) ≃ Q(i

√
3) and

Q[t]/(t2 + 1) ≃ Q(i). Thus is suffices to prove that Q(i
√
3) ̸≃ Q(i). Well, suppose

ϕ : Q(i
√
3)

∼−→Q(i).

Note that ϕ(1) = 1, whence ϕ(−1) = −1 (it must equal ±1, but ϕ must be injective). It
follows that ϕ(n) = n for all n ∈ Z, from which we deduce that ϕ(α) = α for all α ∈ Q.
In other words, any isomorphism between these two field extensions of Q must fix
Q. But this immediately yields a problem: we must have ϕ(i

√
3)2 = −3, whence ϕ(i

√
3) =

±i
√
3, neither of which live in Q(i).
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(e) Are the two fields R[t]/⟨t2 + 3⟩ and R[t]/⟨t2 + 1⟩ isomorphic? Why or why not? Prove.

Yes, these two fields are isomorphic. Indeed, Kronecker’s theorem implies

R[t]/(t2 + 3) ≃ R[i
√
3] = {a+ bi

√
3 : a, b ∈ R}

= {a+ bi : a, b ∈ R} = R[i] ≃ R[t]/(t2 + 1).

5.4 True facts about field extensions.

(a) Suppose K and L are fields, and that there exists a ring homomorphism φ : K → L. Prove that L
is a field extension of K.

It suffices to prove that φ is injective. Since φ preserves addition it must map 0 7→ 0, and
since it’s a ring homomorphism, it must also send 1 7→ 1 by definition. In particular, for any
x ̸= y we have φ(x − y)φ

(
(x − y)−1

)
= 1. It follows that φ(x − y) ̸= 0, or in other words,

that φ(x) ̸= φ(y).

(b) Prove that [L : K] = 1 if and only if L ≃ K.

Given L/K, there exists some embedding φ : K ↪→ L. We endow L with the structure of a
vector space over K with scalar multiplication defined by kx := φ(k)x for any k ∈ K and
x ∈ L.

The degree of L/K is 1 iff there exists a basis for L over K which consists of a single element.
In other words, [L : K] = 1 iff there exists x0 ∈ L such that L = {kx0 : k ∈ K}. But this
implies the existence of k0 ∈ K× such that k0x0 = 1, whence

L = {kx0 : k ∈ K} = {jk0x0 : j ∈ K} = {j : j ∈ K}.

In particular we deduce that φ is a surjection as well as an embedding, hence is an isomor-
phism between K and L.

(c) Suppose L/K is a field extension with char K ̸= 2. Prove that [L : K] = 2 if and only if ∃α ∈ L
such that α ̸∈ K, L = K(α), and α2 ∈ K.

The reverse direction is the easier of the two, so we dispense with it first. Given α ∈ L such
that α ̸∈ K, L = K(α), and α2 ∈ K, we see that α is algebraic over K: it is a root of the
polynomial t2 − α2 ∈ K[t]. We immediately deduce that K[α] = K(α). Moreover,

K[α] ≃ K[t]/(t2 − α2),

whence every element of K[α] can be reduced to the form x+ αy for some x, y ∈ K. Thus,
{1, α} spans L/K, so [L : K] ≤ 2. On the other hand, since α ̸∈ K we see that [L : K] ≥ 2.
Thus, [L : K] = 2.

continued on next page...
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Next we tackle the forward direction. Suppose L/K is a field extension of degree 2.

Lemma. There exists β ∈ L such that {1, β} is a basis for L/K.
Proof. By definition, we know there exists a basis {α, β} for L/K. If either of α or β is an
element of K, we’re done (after renormalization), so we may assume neither α nor β belong
to K. I claim that in this case, {1, β} is a basis. To see this, observe that we can express 1
in a unique way as a linear combination of α and β; note that the coefficients of both α and
β must be nonzero, since neither lives in K. Thus we may express α as a linear combination
of 1 and β. This immediately implies that {1, β} spans L. To see that 1 and β are linearly
independent, suppose x + βy = 0 for some x, y ∈ K. If y were nonzero, this would force
β ∈ K, which we assumed isn’t the case. Therefore, y must be 0; this in turn forces x = 0,
and we’re done!

Thus armed, we proceed to the matter at hand. Pick a basis of L/K of the form
{1, β}. This immediately implies that β ̸∈ K (else 1 and β would be linearly dependent
over K), and also that L = K(β). I claim that β is algebraic over K, and that its
minimal polynomial mβ ∈ K[t] has degree 2. Indeed, since any three elements of L
must be linearly dependent, there must be some nontrivial linear combination of 1, β, β2

which produces 0, which implies that degmβ ≤ 2. On the other hand, β ̸∈ K, so degmβ ≥ 2.

Therefore, we may writemβ(t) = t2+Bt+C with B,C ∈ K and C ̸= 0. Now set α = β+B/2.
Then:

� L = K(β) = K(α), and

� α2 = B2/4− C ∈ K, but α ̸∈ K.

This concludes the proof.

(d) Suppose L/K is a field extension with the property that every α ∈ L is algebraic over K. Prove
that any ring R lying between K and L (i.e. K ⊆ R ⊆ L) must be a field.

Note that since R ⊆ L, R must be a commutative ring. It therefore suffices to show that
every nonzero α ∈ R has a multiplicative inverse in R. By hypothesis, α is algebraic over
K. Let mα be its minimal polynomial over K, say,

mα(t) := tn + cn−1t
n−1 + · · ·+ c1t+ c0 ∈ K[t].

Observe that c0 ̸= 0, else mα would be reducible. Plugging in α and performing some
algebraic manipulations produces

α−1 = −c−1
0 (αn−1 + cn−1α

n−2 + · · ·+ c1),

which we know is in R since c−1
0 ∈ K× ⊆ R.

(e) Suppose α ∈ L/K is algebraic over K. Prove that K(α) = K[α].

We proved in class that K[α] ≃ K[t]/⟨mα⟩. Moreover, since mα is irreducible, the right
hand side is a field. Thus K[α] is a field, which instantly implies K[α] = K(α).

(f) Suppose α ∈ L/K is transcendental over K. Prove that K(α) ̸≃ K[α].

If K[α] ≃ K(α), then α is invertible in K[α], i.e. there exists some p ∈ K[t] such that
αp(α) = 1. But then α is a root of tp(t)− 1 ∈ K[t], and therefore α is not transcendental.
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5.5 Playing with algebraic numbers. (Please don’t use tools you learned from algebraic number theory.)

(a) Prove that
√
2 +

√
5 is algebraic.

In class (Lecture 11) we proved that for any α, β that are algebraic over K, the field
extension K(α, β)/K is algebraic; in particular, α + β, αβ, etc. are all algebraic over K.
However, I asked you in class not to use this fact! Instead, we’ll find the minimal polynomial.

Let α :=
√
2 +

√
5. Then

α2 = 9 + 2
√
10

whence (α2−9)2 = 40. After simplifying, we deduce that α is a root of f(x) := x4−18x2+41.
I claim this is irreducible over Q. Indeed, the rational root test shows that f has no roots in
Q, which only leaves the possibility that f is the product of two monic quadratics; moreover,
by Gauss’ lemma these must both be in Z[x]. Some algebra shows this isn’t possible, whence
f is irreducible overQ and hence must be the minimal polynomial of α overQ. (Alternatively,
the quadratic formula shows that if β is a root of f , then α2 = 9± 2

√
10 ̸∈ Q.)

(b) Suppose α is algebraic over Q. Prove that iα is also algebraic over Q.

Again, we proved that the product of any two algebraic numbers must be algebraic, which
settles the matter. Here’s a more direct proof: suppose α has minimal polynomial m ∈ Q[x],
and set

f(x) := m(−ix)m(−ix).

It’s an exercise to prove that f ∈ Q[x], and we have

f(iα) = m(α)m(α) = 0,

which proves that iα is algebraic over Q. (Note that f is not necessarily the minimal
polynomial of α!)

(c) Suppose α is algebraic over Q. Is
√
α algebraic over Q? Justify your answer with a proof or a

counterexample.

Let m ∈ Q[x] be the minimal polynomial of α over Q, and set f(x) := m(x2). Clearly
f ∈ Q[x], and

f(
√
α) = m(α) = 0,

so
√
α must be algebraic over Q as well.

(d) Given α algebraic over K, suppose mα has odd degree. Prove that K(α2) = K(α).

It is clear that K(α2) ⊆ K(α). To show the reverse containment, it suffices to show α can
be expressed as a rational expression over K(α2). Let mα denote the minimal polynomial
of α over K, and write

mα(x) = A(x2) + xB(x2)

where A,B ∈ K[x]. Plugging α in and simplifying yields

α = −A(α2)/B(α2) ∈ K(α2).

Actually, there’s one more thing to check: that B(α2) ̸= 0. To see this, note that
degmα = 1 + 2degB. In particular, degB(x2) = 2 degB < degmα, whence B(α2) ̸= 0.
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