Williams College
 Department of Mathematics and Statistics
 MATH 394 : GALOIS THEORY Solution Set 5

5.1 Prove that $f(t):=1+t+t^{2}+\cdots+t^{n-1}$ is irreducible over \mathbb{Q} iff n is prime.

Let $f(t):=1+t+t^{2}+\cdots+t^{n-1}$. Since this is a geometric series, we can write

$$
f(t)=\frac{t^{n}-1}{t-1} .
$$

If $n=a b$ is composite, we see that

$$
\begin{aligned}
f(t) & =\frac{\left(t^{a}\right)^{b}-1}{t-1}=\frac{t^{a}-1}{t-1} \cdot\left(1+t^{a}+t^{2 a}+\cdots+t^{a(b-1)}\right) \\
& =\left(1+t+t^{2}+\cdots+t^{a-1}\right)\left(1+t^{a}+t^{2 a}+\cdots+t^{a(b-1)}\right) .
\end{aligned}
$$

Else, if n is prime, we have

$$
f(t+1)=t^{n-1}+\binom{n}{1} t^{n-2}+\binom{n}{2} t^{n-3}+\cdots+\binom{n}{n-2} t+\binom{n}{n-1} .
$$

Applying Eisenstein at the prime n shows this is irreducible.
5.2 Let $\omega:=e^{2 \pi i / 3}$. Show that $\mathbb{Q}(\omega)=\mathbb{Q}[\omega]$.

There are (at least!) two approaches to this:

1. High-brow approach. We clearly have $\mathbb{Q}[\omega] \subseteq \mathbb{Q}(\omega)$, so it suffices to prove the reverse inclusion. With Kronecker's theorem and some amount of work, one can show that $\mathbb{Q}[\omega] \simeq \mathbb{Q}[t] /\left(t^{2}+t+1\right)$. Once this is done, the rest is easy: by Kronecker's theorem we deduce that $\mathbb{Q}[\omega]$ must be a field. But by definition, $\mathbb{Q}(\omega)$ is the smallest field containing both \mathbb{Q} and $\omega!$ QED.
2. Low-brow approach. We wish to show that $\mathbb{Q}[\omega]$ is a field. Since it's already a commutative ring, all that's left is to show existence of multiplicative inverses. Recall that $\omega^{2}+\omega+1=0$. It follows that any polynomial in ω can be expressed in the form $a+b \omega$. Thus it suffices to prove that $1+c \omega$ has an inverse in $\mathbb{Q}[\omega]$. Note that

$$
\frac{1}{1+c \omega}=\frac{1-c \omega+c^{2} \omega^{2}}{1+c^{3}}=\frac{\left(1-c^{2}\right)-\left(c+c^{2}\right) \omega}{1+c^{3}} \in \mathbb{Q}[\omega] .
$$

[The easiest way to discover this is to expand the LHS by Taylor series. This isn't a proof, since convergence is an issue for some choices of c, but once one knows the answer, it's easy to prove it directly!]

5.3 Fun with quotients!

(a) Prove that $\mathbb{Q}[t] /\left\langle t^{3}-2\right\rangle \simeq \mathbb{Q}[\sqrt[3]{2}]$.

Step 1: prove that $\mathbb{Q}[t] /\left\langle t^{3}-2\right\rangle=\left\{\left[a+b t+c t^{2}\right]: a, b, c \in \mathbb{Q}\right\}$.
Step 2: prove that the map $\left[a+b t+c t^{2}\right] \mapsto a+b \sqrt[3]{2}+c \sqrt[3]{2}^{2}$ is an isomorphism.
(b) Prove that $\mathbb{Q}[\sqrt[3]{2}]=\mathbb{Q}(\sqrt[3]{2})$. Do not use algebraic number theory! [Hint: you may find the identity $x^{3}+y^{3}=(x+y)\left(x^{2}-x y+y^{2}\right)$ useful.]
As in 5.2, there are two approaches.

1. High-brow approach. We know by Kronecker and part (a) that $\mathbb{Q}[\sqrt[3]{2}]$ must be a field, and by inspection this field must contain both \mathbb{Q} and $\sqrt[3]{2}$. Thus, $\mathbb{Q}[\sqrt[3]{2}] \supseteq \mathbb{Q}(\sqrt[3]{2})$. The reverse containment is clear.
2. Low-brow approach. It's easiest to proceed in stages:

Claim 1. Given $x \in \mathbb{Q}[\sqrt[3]{2}]$, there exists $y \in \mathbb{Q}[\sqrt[3]{2}]$ such that $x y \in \mathbb{Q}+(\sqrt[3]{2})^{2} \mathbb{Q}$.
Proof. Factor out the constant term of x to get $x / a=1+b \sqrt[3]{2}+c(\sqrt[3]{2})^{2}$ for some $b, c \in \mathbb{Q}$. Add and subtract $(b \sqrt[3]{2})^{2}$. Then can multiply by $1-b \sqrt[3]{2}$ to deduce claim.

Claim 2. Given $\alpha \in \mathbb{Q}+(\sqrt[3]{2})^{2} \mathbb{Q}$ there exists $z \in \mathbb{Q}[\sqrt[3]{2}]$ such that $\alpha z \in \mathbb{Q}$.
Proof. Factor out constant term of α to write $\alpha / r=1+s(\sqrt[3]{2})^{2}$ with $s \in \mathbb{Q}$. Set $\beta:=s(\sqrt[3]{2})^{2}$. Then $\alpha / r \cdot\left(1-\beta+\beta^{2}\right) \in \mathbb{Q}$.
(c) Does there exist any $\alpha \in \mathbb{C}$ such that $\mathbb{Q}[t] /\left\langle t^{3}-2\right\rangle \simeq \mathbb{Q}(\alpha)$ but $\mathbb{Q}(\alpha) \neq \mathbb{Q}(\sqrt[3]{2})$? Prove.

Yes: $\alpha=\omega \sqrt[3]{2}$.
(d) Are the two fields $\mathbb{Q}[t] /\left\langle t^{2}+3\right\rangle$ and $\mathbb{Q}[t] /\left\langle t^{2}+1\right\rangle$ isomorphic? Why or why not? Prove.

Nope. Both of these fields look like $\{[a t+b]: a, b \in \mathbb{Q}\}$, but the natural guess at an isomorphism fails: if $\phi: \mathbb{Q}[t] /\left(t^{2}+3\right) \rightarrow \mathbb{Q}[t] /\left(t^{2}+1\right)$ is defined by $\phi([a t+b]):=[a t+b]$, then $\phi([9])=\phi\left([t]^{4}\right)=[t]^{4}=[1]=\phi([1])$, so it isn't injective.

But this doesn't answer the question: it's possible there exists some more complicated isomorphism between the two spaces! Before excluding this possibility, we make a quick shift to a more convenient viewpoint: one can prove that $\mathbb{Q}[t] /\left(t^{2}+3\right) \simeq \mathbb{Q}(i \sqrt{3})$ and $\mathbb{Q}[t] /\left(t^{2}+1\right) \simeq \mathbb{Q}(i)$. Thus is suffices to prove that $\mathbb{Q}(i \sqrt{3}) \not 千 \mathbb{Q}(i)$. Well, suppose

$$
\phi: \mathbb{Q}(i \sqrt{3}) \xrightarrow{\sim} \mathbb{Q}(i) .
$$

Note that $\phi(1)=1$, whence $\phi(-1)=-1$ (it must equal ± 1, but ϕ must be injective). It follows that $\phi(n)=n$ for all $n \in \mathbb{Z}$, from which we deduce that $\phi(\alpha)=\alpha$ for all $\alpha \in \mathbb{Q}$. In other words, any isomorphism between these two field extensions of \mathbb{Q} must fix \mathbb{Q}. But this immediately yields a problem: we must have $\phi(i \sqrt{3})^{2}=-3$, whence $\phi(i \sqrt{3})=$ $\pm i \sqrt{3}$, neither of which live in $\mathbb{Q}(i)$.
(e) Are the two fields $\mathbb{R}[t] /\left\langle t^{2}+3\right\rangle$ and $\mathbb{R}[t] /\left\langle t^{2}+1\right\rangle$ isomorphic? Why or why not? Prove.

Yes, these two fields are isomorphic. Indeed, Kronecker's theorem implies

$$
\begin{aligned}
\mathbb{R}[t] /\left(t^{2}+3\right) \simeq \mathbb{R}[i \sqrt{3}] & =\{a+b i \sqrt{3}: a, b \in \mathbb{R}\} \\
& =\{a+b i: a, b \in \mathbb{R}\}=\mathbb{R}[i] \simeq \mathbb{R}[t] /\left(t^{2}+1\right)
\end{aligned}
$$

5.4 True facts about field extensions.
(a) Suppose K and L are fields, and that there exists a ring homomorphism $\varphi: K \rightarrow L$. Prove that L is a field extension of K.
It suffices to prove that φ is injective. Since φ preserves addition it must map $0 \mapsto 0$, and since it's a ring homomorphism, it must also send $1 \mapsto 1$ by definition. In particular, for any $x \neq y$ we have $\varphi(x-y) \varphi\left((x-y)^{-1}\right)=1$. It follows that $\varphi(x-y) \neq 0$, or in other words, that $\varphi(x) \neq \varphi(y)$.
(b) Prove that $[L: K]=1$ if and only if $L \simeq K$.

Given L / K, there exists some embedding $\varphi: K \hookrightarrow L$. We endow L with the structure of a vector space over K with scalar multiplication defined by $k x:=\varphi(k) x$ for any $k \in K$ and $x \in L$.

The degree of L / K is 1 iff there exists a basis for L over K which consists of a single element. In other words, $[L: K]=1$ iff there exists $x_{0} \in L$ such that $L=\left\{k x_{0}: k \in K\right\}$. But this implies the existence of $k_{0} \in K^{\times}$such that $k_{0} x_{0}=1$, whence

$$
L=\left\{k x_{0}: k \in K\right\}=\left\{j k_{0} x_{0}: j \in K\right\}=\{j: j \in K\}
$$

In particular we deduce that φ is a surjection as well as an embedding, hence is an isomorphism between K and L.
(c) Suppose L / K is a field extension with char $K \neq 2$. Prove that $[L: K]=2$ if and only if $\exists \alpha \in L$ such that $\alpha \notin K, L=K(\alpha)$, and $\alpha^{2} \in K$.
The reverse direction is the easier of the two, so we dispense with it first. Given $\alpha \in L$ such that $\alpha \notin K, L=K(\alpha)$, and $\alpha^{2} \in K$, we see that α is algebraic over K : it is a root of the polynomial $t^{2}-\alpha^{2} \in K[t]$. We immediately deduce that $K[\alpha]=K(\alpha)$. Moreover,

$$
K[\alpha] \simeq K[t] /\left(t^{2}-\alpha^{2}\right)
$$

whence every element of $K[\alpha]$ can be reduced to the form $x+\alpha y$ for some $x, y \in K$. Thus, $\{1, \alpha\}$ spans L / K, so $[L: K] \leq 2$. On the other hand, since $\alpha \notin K$ we see that $[L: K] \geq 2$. Thus, $[L: K]=2$.

Next we tackle the forward direction. Suppose L / K is a field extension of degree 2 .
Lemma. There exists $\beta \in L$ such that $\{1, \beta\}$ is a basis for L / K.
Proof. By definition, we know there exists a basis $\{\alpha, \beta\}$ for L / K. If either of α or β is an element of K, we're done (after renormalization), so we may assume neither α nor β belong to K. I claim that in this case, $\{1, \beta\}$ is a basis. To see this, observe that we can express 1 in a unique way as a linear combination of α and β; note that the coefficients of both α and β must be nonzero, since neither lives in K. Thus we may express α as a linear combination of 1 and β. This immediately implies that $\{1, \beta\}$ spans L. To see that 1 and β are linearly independent, suppose $x+\beta y=0$ for some $x, y \in K$. If y were nonzero, this would force $\beta \in K$, which we assumed isn't the case. Therefore, y must be 0 ; this in turn forces $x=0$, and we're done!

Thus armed, we proceed to the matter at hand. Pick a basis of L / K of the form $\{1, \beta\}$. This immediately implies that $\beta \notin K$ (else 1 and β would be linearly dependent over K), and also that $L=K(\beta)$. I claim that β is algebraic over K, and that its minimal polynomial $m_{\beta} \in K[t]$ has degree 2 . Indeed, since any three elements of L must be linearly dependent, there must be some nontrivial linear combination of $1, \beta, \beta^{2}$ which produces 0 , which implies that $\operatorname{deg} m_{\beta} \leq 2$. On the other hand, $\beta \notin K$, so $\operatorname{deg} m_{\beta} \geq 2$.

Therefore, we may write $m_{\beta}(t)=t^{2}+B t+C$ with $B, C \in K$ and $C \neq 0$. Now set $\alpha=\beta+B / 2$. Then:

- $L=K(\beta)=K(\alpha)$, and
- $\alpha^{2}=B^{2} / 4-C \in K$, but $\alpha \notin K$.

This concludes the proof.
(d) Suppose L / K is a field extension with the property that every $\alpha \in L$ is algebraic over K. Prove that any ring R lying between K and L (i.e. $K \subseteq R \subseteq L$) must be a field.
Note that since $R \subseteq L, R$ must be a commutative ring. It therefore suffices to show that every nonzero $\alpha \in R$ has a multiplicative inverse in R. By hypothesis, α is algebraic over K. Let m_{α} be its minimal polynomial over K, say,

$$
m_{\alpha}(t):=t^{n}+c_{n-1} t^{n-1}+\cdots+c_{1} t+c_{0} \in K[t] .
$$

Observe that $c_{0} \neq 0$, else m_{α} would be reducible. Plugging in α and performing some algebraic manipulations produces

$$
\alpha^{-1}=-c_{0}^{-1}\left(\alpha^{n-1}+c_{n-1} \alpha^{n-2}+\cdots+c_{1}\right)
$$

which we know is in R since $c_{0}^{-1} \in K^{\times} \subseteq R$.
(e) Suppose $\alpha \in L / K$ is algebraic over K. Prove that $K(\alpha)=K[\alpha]$.

We proved in class that $K[\alpha] \simeq K[t] /\left\langle m_{\alpha}\right\rangle$. Moreover, since m_{α} is irreducible, the right hand side is a field. Thus $K[\alpha]$ is a field, which instantly implies $K[\alpha]=K(\alpha)$.
(f) Suppose $\alpha \in L / K$ is transcendental over K. Prove that $K(\alpha) \nsim K[\alpha]$.

If $K[\alpha] \simeq K(\alpha)$, then α is invertible in $K[\alpha]$, i.e. there exists some $p \in K[t]$ such that $\alpha p(\alpha)=1$. But then α is a root of $\operatorname{tp}(t)-1 \in K[t]$, and therefore α is not transcendental.
5.5 Playing with algebraic numbers. (Please don't use tools you learned from algebraic number theory.)
(a) Prove that $\sqrt{2}+\sqrt{5}$ is algebraic.

In class (Lecture 11) we proved that for any α, β that are algebraic over K, the field extension $K(\alpha, \beta) / K$ is algebraic; in particular, $\alpha+\beta, \alpha \beta$, etc. are all algebraic over K. However, I asked you in class not to use this fact! Instead, we'll find the minimal polynomial.

Let $\alpha:=\sqrt{2}+\sqrt{5}$. Then

$$
\alpha^{2}=9+2 \sqrt{10}
$$

whence $\left(\alpha^{2}-9\right)^{2}=40$. After simplifying, we deduce that α is a root of $f(x):=x^{4}-18 x^{2}+41$.
I claim this is irreducible over \mathbb{Q}. Indeed, the rational root test shows that f has no roots in \mathbb{Q}, which only leaves the possibility that f is the product of two monic quadratics; moreover, by Gauss' lemma these must both be in $\mathbb{Z}[x]$. Some algebra shows this isn't possible, whence f is irreducible over \mathbb{Q} and hence must be the minimal polynomial of α over \mathbb{Q}. (Alternatively, the quadratic formula shows that if β is a root of f, then $\alpha^{2}=9 \pm 2 \sqrt{10} \notin \mathbb{Q}$.)
(b) Suppose α is algebraic over \mathbb{Q}. Prove that $i \alpha$ is also algebraic over \mathbb{Q}.

Again, we proved that the product of any two algebraic numbers must be algebraic, which settles the matter. Here's a more direct proof: suppose α has minimal polynomial $m \in \mathbb{Q}[x]$, and set

$$
f(x):=m(-i x) \overline{m(-i x)}
$$

It's an exercise to prove that $f \in \mathbb{Q}[x]$, and we have

$$
f(i \alpha)=m(\alpha) \overline{m(\alpha)}=0
$$

which proves that $i \alpha$ is algebraic over \mathbb{Q}. (Note that f is not necessarily the minimal polynomial of $\alpha!$)
(c) Suppose α is algebraic over \mathbb{Q}. Is $\sqrt{\alpha}$ algebraic over \mathbb{Q} ? Justify your answer with a proof or a counterexample.
Let $m \in \mathbb{Q}[x]$ be the minimal polynomial of α over \mathbb{Q}, and set $f(x):=m\left(x^{2}\right)$. Clearly $f \in \mathbb{Q}[x]$, and

$$
f(\sqrt{\alpha})=m(\alpha)=0
$$

so $\sqrt{\alpha}$ must be algebraic over \mathbb{Q} as well.
(d) Given α algebraic over K, suppose m_{α} has odd degree. Prove that $K\left(\alpha^{2}\right)=K(\alpha)$.

It is clear that $K\left(\alpha^{2}\right) \subseteq K(\alpha)$. To show the reverse containment, it suffices to show α can be expressed as a rational expression over $K\left(\alpha^{2}\right)$. Let m_{α} denote the minimal polynomial of α over K, and write

$$
m_{\alpha}(x)=A\left(x^{2}\right)+x B\left(x^{2}\right)
$$

where $A, B \in K[x]$. Plugging α in and simplifying yields

$$
\alpha=-A\left(\alpha^{2}\right) / B\left(\alpha^{2}\right) \in K\left(\alpha^{2}\right)
$$

Actually, there's one more thing to check: that $B\left(\alpha^{2}\right) \neq 0$. To see this, note that $\operatorname{deg} m_{\alpha}=1+2 \operatorname{deg} B$. In particular, $\operatorname{deg} B\left(x^{2}\right)=2 \operatorname{deg} B<\operatorname{deg} m_{\alpha}$, whence $B\left(\alpha^{2}\right) \neq 0$.

