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Prove that f(t) := 1+t -+t +--- 4+ t"~! is irreducible over Q iff n is prime.

Let f(t):=1+t+t>+---+t""1 Since this is a geometric series, we can write

1
t) = .
If n = ab is composite, we see that
)y -1 tr—1
f(t)=( ) = O e A SR i)

t—1 t—1
:(1—|—t+t2—|—---+ta_1)(1+ta+t2a+"'+ta(b_1)).

Else, if n is prime, we have

Ft+1) =t 1 (T)t"z + (Z)t”S TR (ni2>t+ (nﬁ 1>.

Applying Eisenstein at the prime n shows this is irreducible.

Let w := €2™/3. Show that Q(w) = Q[w)].

There are (at least!) two approaches to this:

1. High-brow approach. We clearly have Qw] € Q(w), so it suffices to prove the reverse
inclusion. With Kronecker’s theorem and some amount of work, one can show that
Qw] ~ Q[t]/(#* +t +1). Once this is done, the rest is easy: by Kronecker’s theorem we
deduce that Q[w] must be a field. But by definition, Q(w) is the smallest field containing
both Q and w! QED.

2. Low-brow approach. We wish to show that Q[w] is a field. Since it’s already a commutative
ring, all that’s left is to show existence of multiplicative inverses. Recall that w? +w+1 = 0.
It follows that any polynomial in w can be expressed in the form a + bw. Thus it suffices to
prove that 1+ cw has an inverse in Q[w]. Note that

1 l-—w+cw? (1-&)—(c+A)w
l+eaw 1+ 14¢3

€ Qlw].

[The easiest way to discover this is to expand the LHS by Taylor series. This isn’t a proof,
since convergence is an issue for some choices of ¢, but once one knows the answer, it’s easy

to prove it directly!]




5.3 Fun with quotients!
(a) Prove that Q[t]/(t? —2) ~ Q[v/2].
Step 1: prove that Q[t]/(t3 —2) = {[a + bt + ct?] : a,b,c € Q}.

2
Step 2: prove that the map [a + bt + ct?] — a + bv/2 + ¢v/2" is an isomorphism.

(b) Prove that Q[v/2] = Q(¥/2). Do not use algebraic number theory! [Hint: you may find the identity
23 4 y° = (z +y)(2® — zy + y?) useful]

As in 5.2, there are two approaches.

1. High-brow approach. We know by Kronecker and part (a) that Q[v/2] must be a field,
and by inspection this field must contain both Q and /2. Thus, (@[\3/5] D (@(\3/5) The
reverse containment is clear.

2. Low-brow approach. It’s easiest to proceed in stages:

Claim 1. Given x € Q[¢/2], there exists y € Q[v/2] such that 2y € Q + (v/2)?Q.
Proof. Factor out the constant term of = to get 2/a = 1 + b3/2 4 ¢(v/2)? for some b, ¢ € Q.
Add and subtract (b+/2)2. Then can multiply by 1 — b3/2 to deduce claim.

Claim 2. Given o € Q + (V/2)2Q there exists z € Q[/2] such that az € Q.
Proof. Factor out constant term of a to write a/r = 1+s(3/2)? with s € Q. Set 3 := s(3/2)%.
Then o/r - (1 — 8+ %) € Q.

(c) Does there exist any o € C such that Q[t]/(t> — 2) ~ Q(a) but Q(«a) # Q(¥/2)? Prove.
|Yes: a=wv/2. |

(d) Are the two fields Q[t]/(t? + 3) and Q[t]/(¢?> + 1) isomorphic? Why or why not? Prove.

Nope. Both of these fields look like {[at + b] : a,b € Q}, but the natural guess at an
isomorphism fails: if ¢ : Q[t]/(t? + 3) — Q[t]/(t? + 1) is defined by ¢([at + b]) := [at + V],
then ¢([9]) = #([t]*) = [t]* = [1] = ¢([1]), so it isn’t injective.

But this doesn’t answer the question: it’s possible there exists some more complicated
isomorphism between the two spaces! Before excluding this possibility, we make a quick
shift to a more convenient viewpoint: one can prove that Q[t]/(t?> 4+ 3) ~ Q(iv/3) and
Q[t]/(t? + 1) ~ Q(4). Thus is suffices to prove that Q(iv/3) 2¢ Q(i). Well, suppose

¢ : Q(iv3) = Q(i).

Note that ¢(1) = 1, whence ¢(—1) = —1 (it must equal £1, but ¢ must be injective). It
follows that ¢(n) = n for all n € Z, from which we deduce that ¢(a) = « for all a € Q.
In other words, any isomorphism between these two field extensions of Q must fix
Q. But this immediately yields a problem: we must have ¢(iv/3)? = —3, whence ¢(iv/3) =
+iv/3, neither of which live in Q).




(e) Are the two fields R[t]/(t? + 3) and R[t]/(¢?> + 1) isomorphic? Why or why not? Prove.

Yes, these two fields are isomorphic. Indeed, Kronecker’s theorem implies

R[t]/(t* +3) ~ R[iV3] = {a + biV3: a,b € R}
={a+bi:abecR}=R[i] ~R[t]/(t*+1).

5.4 True facts about field extensions.

(a) Suppose K and L are fields, and that there exists a ring homomorphism ¢ : K — L. Prove that L
is a field extension of K.

It suffices to prove that ¢ is injective. Since ¢ preserves addition it must map 0 — 0, and

since it’s a ring homomorphism, it must also send 1 — 1 by definition. In particular, for any

x # y we have o(z — y)p((z —y)~) = 1. It follows that ¢(z — y) # 0, or in other words,

that p(z) # ¢(y).

(b) Prove that [L: K] =1 if and only if L ~ K.

Given L/K, there exists some embedding ¢ : K < L. We endow L with the structure of a
vector space over K with scalar multiplication defined by kxz := p(k)x for any k € K and
x € L.

The degree of L/ K is 1 iff there exists a basis for L over K which consists of a single element.
In other words, [L : K| = 1 iff there exists xg € L such that L = {kzo : k € K}. But this
implies the existence of kg € K such that kgxy = 1, whence

L=A{kxy:ke K}={jkoxo:jeK}={j:je€K}.

In particular we deduce that ¢ is a surjection as well as an embedding, hence is an isomor-
phism between K and L.

(¢) Suppose L/K is a field extension with char K # 2. Prove that [L : K] = 2 if and only if 3o € L
such that o ¢ K, L = K(a), and o? € K.

The reverse direction is the easier of the two, so we dispense with it first. Given a € L such
that « ¢ K, L = K(a), and o? € K, we see that « is algebraic over K: it is a root of the
polynomial t? — a? € K[t|. We immediately deduce that K[a] = K(«). Moreover,

K[o] = K[t]/(t* - o®),

whence every element of K[a] can be reduced to the form z + ay for some z,y € K. Thus,
{1,a} spans L/K, so [L: K] < 2. On the other hand, since o ¢ K we see that [L : K| > 2.
Thus, [L: K] = 2.

continued on next page...




Next we tackle the forward direction. Suppose L/K is a field extension of degree 2.

Lemma. There exists § € L such that {1, 8} is a basis for L/K.

Proof. By definition, we know there exists a basis {«, 8} for L/K. If either of o or § is an
element of K, we're done (after renormalization), so we may assume neither « nor 8 belong
to K. I claim that in this case, {1, 8} is a basis. To see this, observe that we can express 1
in a unique way as a linear combination of o and ; note that the coefficients of both a and
£ must be nonzero, since neither lives in K. Thus we may express « as a linear combination
of 1 and /. This immediately implies that {1, 3} spans L. To see that 1 and § are linearly
independent, suppose x + Sy = 0 for some x,y € K. If y were nonzero, this would force
£ € K, which we assumed isn’t the case. Therefore, y must be 0; this in turn forces x = 0,
and we're done! O

Thus armed, we proceed to the matter at hand. Pick a basis of L/K of the form
{1,5}. This immediately implies that 8 ¢ K (else 1 and 8 would be linearly dependent
over K), and also that L = K(f). I claim that § is algebraic over K, and that its
minimal polynomial mg € K[t] has degree 2. Indeed, since any three elements of L
must be linearly dependent, there must be some nontrivial linear combination of 1,3, 32
which produces 0, which implies that degmg < 2. On the other hand, 8 € K, so degmg > 2.

Therefore, we may write mg(t) = t?+Bt+C with B,C € K and C # 0. Now set a = 3+B/2.
Then:

e [ =K(B)=K(a), and
e a?=B?/4A-CeK,buta¢ K.

This concludes the proof.

Suppose L/K is a field extension with the property that every « € L is algebraic over K.
that any ring R lying between K and L (i.e. K C R C L) must be a field.

Note that since R C L, R must be a commutative ring. It therefore suffices to show that
every nonzero o € R has a multiplicative inverse in R. By hypothesis, « is algebraic over
K. Let m, be its minimal polynomial over K, say,

Ma(t) =t" +cp 1 t" 4+ et + o € K[t].

Observe that ¢y # 0, else m, would be reducible. Plugging in o and performing some
algebraic manipulations produces

~1 1, n—1 —2
o =—cy (@ " ),

which we know is in R since cal e K* CR.

Suppose a € L/K is algebraic over K. Prove that K(«) = K|a].

We proved in class that Kla] ~ K[t]/{(m,). Moreover, since m, is irreducible, the right
hand side is a field. Thus K[a] is a field, which instantly implies K[a] = K(«).

Suppose a € L/K is transcendental over K. Prove that K (a) %2 KJa].

If Klo] ~ K(«), then « is invertible in K[a], i.e. there exists some p € K|[t] such that
ap(a) = 1. But then « is a root of tp(t) — 1 € K[t], and therefore « is not transcendental.

Prove



5.5 Playing with algebraic numbers. (Please don’t use tools you learned from algebraic number theory.)

(a) Prove that V2 + /5 is algebraic.

In class (Lecture 11) we proved that for any «, [ that are algebraic over K, the field
extension K («,3)/K is algebraic; in particular, o + 8, «f3, etc. are all algebraic over K.
However, I asked you in class not to use this fact! Instead, we’ll find the minimal polynomial.

Let o := /2 + /5. Then
a? =9+2V10

whence (a2 —9)2 = 40. After simplifying, we deduce that a is a root of f(z) := x* — 1822 +41.
I claim this is irreducible over Q. Indeed, the rational root test shows that f has no roots in
@, which only leaves the possibility that f is the product of two monic quadratics; moreover,
by Gauss’ lemma these must both be in Z[z]. Some algebra shows this isn’t possible, whence
f is irreducible over Q and hence must be the minimal polynomial of «w over Q. (Alternatively,
the quadratic formula shows that if 3 is a root of f, then a? = 9 + 210 ¢ Q.)

(b) Suppose « is algebraic over Q. Prove that i« is also algebraic over Q.

Again, we proved that the product of any two algebraic numbers must be algebraic, which
settles the matter. Here’s a more direct proof: suppose a has minimal polynomial m € Q[z],
and set

f(x) == m(—ix)m(—ix).

It’s an exercise to prove that f € Q[z], and we have

flia) = m(a)m(a) =0,

which proves that i« is algebraic over Q. (Note that f is not necessarily the minimal
polynomial of a!)

(c) Suppose « is algebraic over Q. Is y/a algebraic over Q7 Justify your answer with a proof or a
counterexample.

Let m € Q[x] be the minimal polynomial of o over Q, and set f(z) := m(z?). Clearly
f € Qla], and
f(Va) =m(a) =0,

s0 v/a must be algebraic over Q as well.

(d) Given « algebraic over K, suppose m,, has odd degree. Prove that K(a?) = K(a).

It is clear that K(a?) C K(a). To show the reverse containment, it suffices to show a can
be expressed as a rational expression over K(a?). Let m, denote the minimal polynomial
of o over K, and write

me(z) = A(z?) + xB(2?)

where A, B € K[z]. Plugging « in and simplifying yields
a=—A(a?)/B(a?) € K(a?).

Actually, there’s one more thing to check: that B(a?) # 0. To see this, note that
degm, = 1+ 2deg B. In particular, deg B(2?) = 2deg B < degm,, whence B(a?) # 0.




