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Some Common Misconceptions.

1. If L = K(α) then {1, α} is not necessarily a basis of L! However, {1, α, α2, . . . , αn−1}
where n := degmα is a basis.

2. Given K/Q and some α of degree 3 over Q, it is not necessarily true that
[K(α) : K] = 1 or 3. For example, if α = ω 3

√
2 and K = Q( 3

√
2) then [K(α) : K] = 2.

3. Given some algebraic extension K/Q, there’s no canonical minimal polynomial one
can associate to generators of K. For example, Q(ω) = Q(

√
−3), but the two minimal

polynomials of these elements are completely different: x2 + x + 1 and x2 + 3. The
only trait they share (which isn’t a coincidence) is their degree.

6.1 Prove that if 2k + 1 is prime, then k = 2m. [This came up in our discussion of Fermat primes.]

Given 2k+1 a prime number, write k = 2mℓ with ℓ an odd number. Observe that x+1 | xℓ+1
(since −1 is root of both), so 22

m

+ 1 | 2k + 1. Since 2k + 1 is prime, 22
m

+ 1 = 2k + 1,
whence k = 2m.

6.2 Let S := {√p : p is prime}. Prove that Q(S)/Q is algebraic but infinite.

First, observe that any element α ∈ Q(S) must live in Q(
√
p1,

√
p2, . . . ,

√
pn) for some

finite list of primes p1, p2, . . . , pn. Clearly Q(
√
p1,

√
p2, . . . ,

√
pn)/Q is a finite extension (see

below for a precise statement), hence must be algebraic. It follows that α is algebraic over Q.

Next, we prove that Q(S)/Q is infinite. It suffices to prove

Claim. [Q(
√
p1,

√
p2, . . . ,

√
pn) : Q] = 2n for any set of distinct primes p1, p2, . . . , pn.

Proof. We prove, by induction, that
√
p /∈ Q(

√
p1,

√
p2, . . . ,

√
pn) for any prime

p /∈ {p1, p2, . . . , pn}. The claim instantly follows by Tower Law.

The base case n = 0 is simply the assertion that
√
p is irrational. Now set

K := Q(
√
p1,

√
p2, . . . ,

√
pn−1),

and suppose that
√
p ∈ K(

√
pn); in particular,

√
p = a+ b

√
pn

for some a, b ∈ K. Squaring both sides implies
√
pn ∈ K, contradicting our inductive

hypothesis that
√
pn /∈ K.



6.3 Prove that Q(ω 3
√
2) ≃ Q(ω2 3

√
2), but Q(ω 3

√
2) ̸= Q(ω2 3

√
2).

Recall that for any α which is algebraic over K we have

K(α) = K[α] ≃ K[t]/(mα)

where mα denotes the minimal polynomial of α over K.

Observe that all three numbers 3
√
2, ω 3

√
2, ω2 3

√
2 have the same minimal polynomial over Q:

x3 − 2. We deduce that

Q(
3
√
2) ≃ Q(ω

3
√
2) ≃ Q(ω2 3

√
2) ≃ Q[t]/(t3 − 2),

which implies the first part of the question.

Next we prove that Q(ω 3
√
2) ̸= Q(ω2 3

√
2). It suffices to prove

Claim. ω 3
√
2 ̸∈ Q(ω2 3

√
2)

Proof. Suppose ω 3
√
2 ∈ Q(ω2 3

√
2). Then

ω =
ω2 3

√
2

ω 3
√
2

∈ Q(ω2 3
√
2) =⇒ 3

√
2 =

ω2 3
√
2

ω2
∈ Q(ω2 3

√
2).

This implies that Q(ω, 3
√
2) ⊆ Q(ω2 3

√
2). But this opposite inclusion is immediate, whence

Q(ω, 3
√
2) = Q(ω2 3

√
2). But this can’t be the case, since (as we showed in class) the field on

the left hand side has degree 6 over Q, while the field on the right hand side has degree 3.

6.4 In class we found four fields lying between Q and Q(ω, 3
√
2). Prove that there are no others.

First we prove a quick
Lemma. Given F/Q and α ∈ C such that [F : Q] = [Q(α) : Q]. Then α ∈ F iff F = Q(α).
Proof. Suppose α ∈ F . Then Q(α) ⊆ F , whence by Tower Law we have

[F : Q] = [F : Q(α)][Q(α) : Q].

Our hypothesis implies [F : Q(α)] = 1, whence F = Q(α). The reverse direction is trivial.

Continued on next page...
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Pick any field F such that Q ⊊ F ⊊ Q(ω, 3
√
2). Since [Q(ω, 3

√
2) : Q] = 6, Tower Law implies

that [F : Q] = 2 or 3. We consider two cases:

• F contains some cube root of 2, say, α.

Then F ⊇ Q(α), whence [F : Q] ≥ 3; we deduce [F : Q] = 3. By our lemma, we
conclude that F = Q(α).

• F doesn’t contain any cube root of 2.

In this case x3 − 2 is irreducible over F , whence [F (α) : F ] = 3 for any α a
cube root of 2. But F (α) ⊆ Q(ω, 3

√
2), so Tower Law implies [F : Q] = 2. We

claim that ω ∈ F . Otherwise, we’d have [F (ω) : F ] = 2; this would mean that
[F (ω) : Q] = 4, which would contradict the Tower Law since F (ω) ⊆ Q(ω, 3

√
2).

Thus ω ∈ F . Our lemma immediately gives F = Q(ω).

Putting these two cases together, we conclude that any intermediate field must either be of
the form Q(α) for some α a cube root of 2, or of the form Q(ω).

6.5 We imitate the construction of the Galois correspondence from class, but this time with the polynomial

f(x) := x4 − 4x2 + 2. Let α :=
√
2 +

√
2 denote one of the roots of f .

(a) Prove that Q(α) is a splitting field of f .

We need to check two things: that all the roots of f lie in Q(α), and that Q(α) is the
smallest field with this property. The latter claim is clear, since any field in which f splits
must contain α. We thus focus on proving the former claim.

Observe that the roots of f are ±
√
2±

√
2, so it suffices to prove

√
2−

√
2 ∈ Q(α). Since

α
√

2−
√
2 =

√
2, we deduce√

2−
√
2 =

√
2

α
=

α2 − 2

α
∈ Q(α).

(b) Draw a lattice of all intermediate fields between Q and Q(α), along with the degrees of each extension.

Q(α)

Q(
√
2)

Q

2

2

Note that f is Eisenstein at 2, so it’s irreducible over Q. This
implies [Q(α) : Q] = 4. Next, since

√
2 ∈ Q(α) but has degree 2

over Q, we have an intermediate field Q(
√
2).

Claim. There are no other intermediate fields.
Proof. See next page...
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Proof. Given an intermediate field Q ⊊ F ⊊ Q(α). By Tower Law, [F : Q] = 2. If
√
2 ∈ F ,

then the lemma from problem 6.4 implies F = Q(
√
2), and we’re done. I claim that F must

contain
√
2. Indeed, suppose (for the remainder of the proof) that

√
2 ̸∈ F . Below we’ll

construct an element x ∈ F of degree 4 over Q. Since the degree of any element cannot
exceed the degree of its ambient extension, we deduce that [F : Q] ≥ 4. But this contradicts
our assumption that F is an intermediate extension.

Since
√
2 ̸∈ F , we have [F (

√
2) : F ] = 2, so Tower Law implies F (

√
2) has degree 4 over Q.

On the other hand, F (
√
2) ⊆ Q(α), which also has degree 4 over Q, whence F (

√
2) = Q(α).

In particular, α ∈ F (
√
2), so √

2 +
√
2 = x+ y

√
2

for some x, y ∈ F . Squaring both sides and simplifying yields

(1− 2xy)
√
2 = x2 + 2y2 − 2.

Since x, y ∈ F but
√
2 ̸∈ F , the only way this relation could hold is if

2xy = 1 and x2 + 2y2 = 2.

Substitution shows that 2x4 − 4x2 + 1 = 0 which is irreducible over Q (this can be seen by
reduction over F3, for example). Thus, x has degree 4 over Q. But x ∈ F , which implies F
itself must have degree at least 4 over Q. Contradiction!

(c) Determine Aut
(
Q(α)

)
. What familiar group is it isomorphic to?

I claim the automorphism group is the cyclic group of order 4. To see this, first observe that
any automorphism σ ∈ Aut

(
Q(α)

)
fixes all rationals, hence is determined by where it sends

α. Note that (α2− 2)2 = 2; applying σ to both sides and using properties of automorphisms
we find

σ(α) ∈
{
±
√

2±
√
2

}
.

Thus we immediately see that the group Aut
(
Q(α)

)
has order 4. But is it the cyclic group

or the Klein V group?

Consider the automorphism τ ∈ Aut
(
Q(α)

)
defined by

τ(α) :=

√
2−

√
2.

Algebraic manipulation implies that τ(
√
2) = −

√
2, from which we deduce

τ2(α) = τ

(√
2−

√
2

)
= τ

(√
2

α

)
=

−
√
2√

2−
√
2
= −α.

We immediately derive

τ3(α) = τ(−α) = −
√

2−
√
2 and τ4(α) = τ2(−α) = α.

Thus all of τ, τ2, τ3, τ4 are distinct automorphisms. We conclude that
Aut

(
Q(α)

)
= {e, τ, τ2, τ3}.
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(d) Draw a lattice of all subgroups of Aut
(
Q(α)

)
, labelling all the connecting edges by the index of one

group inside the other.

{e, τ, τ2, τ3}

{e, τ2}

{e}

2

2

6.6 Another Galois correspondence, this time for the polynomial g(x) := x4 − 12x2 + 35.

(a) Determine a splitting field K of g. (Write it in the form Q(β1, β2).)

It’s Q(
√
5,
√
7).

(b) Draw a lattice of all intermediate fields between Q and K, along with the degrees of each extension.

Q(
√
5,
√
7)

Q(
√
5) Q(

√
35) Q(

√
7)

Q

2
2

2

2 2
2

As above, verifying that all the fields appear-
ing here are distinct isn’t terribly difficult.
Most of the work goes into proving this is a
complete list. But similar games to the ones
in the previous problem work here as well.

(c) Determine Aut(K). What familiar group is it isomorphic to?

Any automorphism is determined by where it sends
√
5 and

√
7, from which we quickly

deduce that the order of the automorphism group is 4. Is it the cyclic group of the Klein
group? I claim the latter.

Consider the automorphisms defined by

σ(
√
5) = −

√
5 τ(

√
5) =

√
5

σ(
√
7) =

√
7 τ(

√
7) = −

√
7.

It’s straightforward to verify that σ2 = τ2 = e and that σ, τ, and στ are all distinct nontrivial
automorphisms. Thus the automorphism group must be the Klein V group {e, σ, τ, στ}.
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(d) Draw a lattice of all subgroups of Aut(K), labelling all the connecting edges by the index of one
group inside the other.

{e, σ, τ, στ}

{e, σ} {e, στ} {e, τ}

{e}

2
2

2

2
2

2
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