Williams College
 Department of Mathematics and Statistics
 MATH 394 : GALOIS THEORY Solution Set 6

Some Common Misconceptions.

1. If $L=K(\alpha)$ then $\{1, \alpha\}$ is not necessarily a basis of L ! However, $\left\{1, \alpha, \alpha^{2}, \ldots, \alpha^{n-1}\right\}$ where $n:=\operatorname{deg} m_{\alpha}$ is a basis.
2. Given K / \mathbb{Q} and some α of degree 3 over \mathbb{Q}, it is not necessarily true that $[K(\alpha): K]=1$ or 3 . For example, if $\alpha=\omega \sqrt[3]{2}$ and $K=\mathbb{Q}(\sqrt[3]{2})$ then $[K(\alpha): K]=2$.
3. Given some algebraic extension K / \mathbb{Q}, there's no canonical minimal polynomial one can associate to generators of K. For example, $\mathbb{Q}(\omega)=\mathbb{Q}(\sqrt{-3})$, but the two minimal polynomials of these elements are completely different: $x^{2}+x+1$ and $x^{2}+3$. The only trait they share (which isn't a coincidence) is their degree.
6.1 Prove that if $2^{k}+1$ is prime, then $k=2^{m}$. [This came up in our discussion of Fermat primes.]

Given $2^{k}+1$ a prime number, write $k=2^{m} \ell$ with ℓ an odd number. Observe that $x+1 \mid x^{\ell}+1$ (since -1 is root of both), so $2^{2^{m}}+1 \mid 2^{k}+1$. Since $2^{k}+1$ is prime, $2^{2^{m}}+1=2^{k}+1$, whence $k=2^{m}$.
6.2 Let $S:=\{\sqrt{p}: p$ is prime $\}$. Prove that $\mathbb{Q}(S) / \mathbb{Q}$ is algebraic but infinite.

First, observe that any element $\alpha \in \mathbb{Q}(S)$ must live in $\mathbb{Q}\left(\sqrt{p_{1}}, \sqrt{p_{2}}, \ldots, \sqrt{p_{n}}\right)$ for some finite list of primes $p_{1}, p_{2}, \ldots, p_{n}$. Clearly $\mathbb{Q}\left(\sqrt{p_{1}}, \sqrt{p_{2}}, \ldots, \sqrt{p_{n}}\right) / \mathbb{Q}$ is a finite extension (see below for a precise statement), hence must be algebraic. It follows that α is algebraic over \mathbb{Q}.

Next, we prove that $\mathbb{Q}(S) / \mathbb{Q}$ is infinite. It suffices to prove
Claim. $\left[\mathbb{Q}\left(\sqrt{p_{1}}, \sqrt{p_{2}}, \ldots, \sqrt{p_{n}}\right): \mathbb{Q}\right]=2^{n}$ for any set of distinct primes $p_{1}, p_{2}, \ldots, p_{n}$.
Proof. We prove, by induction, that $\sqrt{p} \notin \mathbb{Q}\left(\sqrt{p_{1}}, \sqrt{p_{2}}, \ldots, \sqrt{p_{n}}\right)$ for any prime $p \notin\left\{p_{1}, p_{2}, \ldots, p_{n}\right\}$. The claim instantly follows by Tower Law.

The base case $n=0$ is simply the assertion that \sqrt{p} is irrational. Now set

$$
K:=\mathbb{Q}\left(\sqrt{p_{1}}, \sqrt{p_{2}}, \ldots, \sqrt{p_{n-1}}\right)
$$

and suppose that $\sqrt{p} \in K\left(\sqrt{p_{n}}\right)$; in particular,

$$
\sqrt{p}=a+b \sqrt{p_{n}}
$$

for some $a, b \in K$. Squaring both sides implies $\sqrt{p_{n}} \in K$, contradicting our inductive hypothesis that $\sqrt{p_{n}} \notin K$.
6.3 Prove that $\mathbb{Q}(\omega \sqrt[3]{2}) \simeq \mathbb{Q}\left(\omega^{2} \sqrt[3]{2}\right)$, but $\mathbb{Q}(\omega \sqrt[3]{2}) \neq \mathbb{Q}\left(\omega^{2} \sqrt[3]{2}\right)$.

Recall that for any α which is algebraic over K we have

$$
K(\alpha)=K[\alpha] \simeq K[t] /\left(m_{\alpha}\right)
$$

where m_{α} denotes the minimal polynomial of α over K.
Observe that all three numbers $\sqrt[3]{2}, \omega \sqrt[3]{2}, \omega^{2} \sqrt[3]{2}$ have the same minimal polynomial over \mathbb{Q} : $x^{3}-2$. We deduce that

$$
\mathbb{Q}(\sqrt[3]{2}) \simeq \mathbb{Q}(\omega \sqrt[3]{2}) \simeq \mathbb{Q}\left(\omega^{2} \sqrt[3]{2}\right) \simeq \mathbb{Q}[t] /\left(t^{3}-2\right)
$$

which implies the first part of the question.
Next we prove that $\mathbb{Q}(\omega \sqrt[3]{2}) \neq \mathbb{Q}\left(\omega^{2} \sqrt[3]{2}\right)$. It suffices to prove
Claim. $\omega \sqrt[3]{2} \notin \mathbb{Q}\left(\omega^{2} \sqrt[3]{2}\right)$
Proof. Suppose $\omega \sqrt[3]{2} \in \mathbb{Q}\left(\omega^{2} \sqrt[3]{2}\right)$. Then

$$
\omega=\frac{\omega^{2} \sqrt[3]{2}}{\omega \sqrt[3]{2}} \in \mathbb{Q}\left(\omega^{2} \sqrt[3]{2}\right) \quad \Longrightarrow \quad \sqrt[3]{2}=\frac{\omega^{2} \sqrt[3]{2}}{\omega^{2}} \in \mathbb{Q}\left(\omega^{2} \sqrt[3]{2}\right) .
$$

This implies that $\mathbb{Q}(\omega, \sqrt[3]{2}) \subseteq \mathbb{Q}\left(\omega^{2} \sqrt[3]{2}\right)$. But this opposite inclusion is immediate, whence $\mathbb{Q}(\omega, \sqrt[3]{2})=\mathbb{Q}\left(\omega^{2} \sqrt[3]{2}\right)$. But this can't be the case, since (as we showed in class) the field on the left hand side has degree 6 over \mathbb{Q}, while the field on the right hand side has degree 3 .
6.4 In class we found four fields lying between \mathbb{Q} and $\mathbb{Q}(\omega, \sqrt[3]{2})$. Prove that there are no others.

First we prove a quick
Lemma. Given F / \mathbb{Q} and $\alpha \in \mathbb{C}$ such that $[F: \mathbb{Q}]=[\mathbb{Q}(\alpha): \mathbb{Q}]$. Then $\alpha \in F$ iff $F=\mathbb{Q}(\alpha)$. Proof. Suppose $\alpha \in F$. Then $\mathbb{Q}(\alpha) \subseteq F$, whence by Tower Law we have

$$
[F: \mathbb{Q}]=[F: \mathbb{Q}(\alpha)][\mathbb{Q}(\alpha): \mathbb{Q}] .
$$

Our hypothesis implies $[F: \mathbb{Q}(\alpha)]=1$, whence $F=\mathbb{Q}(\alpha)$. The reverse direction is trivial. Continued on next page...

Pick any field F such that $\mathbb{Q} \subsetneq F \subsetneq \mathbb{Q}(\omega, \sqrt[3]{2})$. Since $[\mathbb{Q}(\omega, \sqrt[3]{2}): \mathbb{Q}]=6$, Tower Law implies that $[F: \mathbb{Q}]=2$ or 3 . We consider two cases:

- F contains some cube root of 2 , say, α.

Then $F \supseteq \mathbb{Q}(\alpha)$, whence $[F: \mathbb{Q}] \geq 3$; we deduce $[F: \mathbb{Q}]=3$. By our lemma, we conclude that $F=\mathbb{Q}(\alpha)$.

- F doesn't contain any cube root of 2 .

In this case $x^{3}-2$ is irreducible over F, whence $[F(\alpha): F]=3$ for any α a cube root of 2 . But $F(\alpha) \subseteq \mathbb{Q}(\omega, \sqrt[3]{2})$, so Tower Law implies $[F: \mathbb{Q}]=2$. We claim that $\omega \in F$. Otherwise, we'd have $[F(\omega): F]=2$; this would mean that $[F(\omega): \mathbb{Q}]=4$, which would contradict the Tower Law since $F(\omega) \subseteq \mathbb{Q}(\omega, \sqrt[3]{2})$. Thus $\omega \in F$. Our lemma immediately gives $F=\mathbb{Q}(\omega)$.

Putting these two cases together, we conclude that any intermediate field must either be of the form $\mathbb{Q}(\alpha)$ for some α a cube root of 2 , or of the form $\mathbb{Q}(\omega)$.
6.5 We imitate the construction of the Galois correspondence from class, but this time with the polynomial $f(x):=x^{4}-4 x^{2}+2$. Let $\alpha:=\sqrt{2+\sqrt{2}}$ denote one of the roots of f.
(a) Prove that $\mathbb{Q}(\alpha)$ is a splitting field of f.

We need to check two things: that all the roots of f lie in $\mathbb{Q}(\alpha)$, and that $\mathbb{Q}(\alpha)$ is the smallest field with this property. The latter claim is clear, since any field in which f splits must contain α. We thus focus on proving the former claim.

Observe that the roots of f are $\pm \sqrt{2 \pm \sqrt{2}}$, so it suffices to prove $\sqrt{2-\sqrt{2}} \in \mathbb{Q}(\alpha)$. Since $\alpha \sqrt{2-\sqrt{2}}=\sqrt{2}$, we deduce

$$
\sqrt{2-\sqrt{2}}=\frac{\sqrt{2}}{\alpha}=\frac{\alpha^{2}-2}{\alpha} \in \mathbb{Q}(\alpha)
$$

(b) Draw a lattice of all intermediate fields between \mathbb{Q} and $\mathbb{Q}(\alpha)$, along with the degrees of each extension.

$\mathbb{Q}(\alpha)$	Note that f is Eisenstein at 2, so it's irreducible over \mathbb{Q}. This implies $[\mathbb{Q}(\alpha): \mathbb{Q}]=4 . ~ N e x t, ~ s i n c e ~$ 2
$\mathbb{Q}(\sqrt{2})$	over \mathbb{Q}, we have an intermediate field $\mathbb{Q}(\sqrt{2})$.
$\mid 2$	Claim. There are no other intermediate fields. Proof. See next page...
\mathbb{Q}	

Proof. Given an intermediate field $\mathbb{Q} \subsetneq F \subsetneq \mathbb{Q}(\alpha)$. By Tower Law, $[F: \mathbb{Q}]=2$. If $\sqrt{2} \in F$, then the lemma from problem 6.4 implies $F=\mathbb{Q}(\sqrt{2})$, and we're done. I claim that F must contain $\sqrt{2}$. Indeed, suppose (for the remainder of the proof) that $\sqrt{2} \notin F$. Below we'll construct an element $x \in F$ of degree 4 over \mathbb{Q}. Since the degree of any element cannot exceed the degree of its ambient extension, we deduce that $[F: \mathbb{Q}] \geq 4$. But this contradicts our assumption that F is an intermediate extension.

Since $\sqrt{2} \notin F$, we have $[F(\sqrt{2}): F]=2$, so Tower Law implies $F(\sqrt{2})$ has degree 4 over \mathbb{Q}. On the other hand, $F(\sqrt{2}) \subseteq \mathbb{Q}(\alpha)$, which also has degree 4 over \mathbb{Q}, whence $F(\sqrt{2})=\mathbb{Q}(\alpha)$. In particular, $\alpha \in F(\sqrt{2})$, so

$$
\sqrt{2+\sqrt{2}}=x+y \sqrt{2}
$$

for some $x, y \in F$. Squaring both sides and simplifying yields

$$
(1-2 x y) \sqrt{2}=x^{2}+2 y^{2}-2
$$

Since $x, y \in F$ but $\sqrt{2} \notin F$, the only way this relation could hold is if

$$
2 x y=1 \quad \text { and } \quad x^{2}+2 y^{2}=2
$$

Substitution shows that $2 x^{4}-4 x^{2}+1=0$ which is irreducible over \mathbb{Q} (this can be seen by reduction over \mathbb{F}_{3}, for example). Thus, x has degree 4 over \mathbb{Q}. But $x \in F$, which implies F itself must have degree at least 4 over \mathbb{Q}. Contradiction!
(c) Determine $\operatorname{Aut}(\mathbb{Q}(\alpha))$. What familiar group is it isomorphic to?

I claim the automorphism group is the cyclic group of order 4. To see this, first observe that any automorphism $\sigma \in \operatorname{Aut}(\mathbb{Q}(\alpha))$ fixes all rationals, hence is determined by where it sends α. Note that $\left(\alpha^{2}-2\right)^{2}=2$; applying σ to both sides and using properties of automorphisms we find

$$
\sigma(\alpha) \in\{ \pm \sqrt{2 \pm \sqrt{2}}\}
$$

Thus we immediately see that the group $\operatorname{Aut}(\mathbb{Q}(\alpha))$ has order 4. But is it the cyclic group or the Klein V group?

Consider the automorphism $\tau \in \operatorname{Aut}(\mathbb{Q}(\alpha))$ defined by

$$
\tau(\alpha):=\sqrt{2-\sqrt{2}}
$$

Algebraic manipulation implies that $\tau(\sqrt{2})=-\sqrt{2}$, from which we deduce

$$
\tau^{2}(\alpha)=\tau(\sqrt{2-\sqrt{2}})=\tau\left(\frac{\sqrt{2}}{\alpha}\right)=\frac{-\sqrt{2}}{\sqrt{2-\sqrt{2}}}=-\alpha
$$

We immediately derive

$$
\tau^{3}(\alpha)=\tau(-\alpha)=-\sqrt{2-\sqrt{2}} \quad \text { and } \quad \tau^{4}(\alpha)=\tau^{2}(-\alpha)=\alpha
$$

Thus all of $\tau, \tau^{2}, \tau^{3}, \tau^{4}$ are distinct automorphisms. We conclude that

$$
\operatorname{Aut}(\mathbb{Q}(\alpha))=\left\{e, \tau, \tau^{2}, \tau^{3}\right\} .
$$

(d) Draw a lattice of all subgroups of $\operatorname{Aut}(\mathbb{Q}(\alpha))$, labelling all the connecting edges by the index of one group inside the other.

$\{e\}$
6.6 Another Galois correspondence, this time for the polynomial $g(x):=x^{4}-12 x^{2}+35$.
(a) Determine a splitting field K of g. (Write it in the form $\mathbb{Q}\left(\beta_{1}, \beta_{2}\right)$.)

$$
\text { It's } \mathbb{Q}(\sqrt{5}, \sqrt{7})
$$

(b) Draw a lattice of all intermediate fields between \mathbb{Q} and K, along with the degrees of each extension.

As above, verifying that all the fields appearing here are distinct isn't terribly difficult. Most of the work goes into proving this is a complete list. But similar games to the ones in the previous problem work here as well.
(c) Determine $\operatorname{Aut}(K)$. What familiar group is it isomorphic to?

Any automorphism is determined by where it sends $\sqrt{5}$ and $\sqrt{7}$, from which we quickly deduce that the order of the automorphism group is 4 . Is it the cyclic group of the Klein group? I claim the latter.

Consider the automorphisms defined by

$$
\begin{aligned}
\sigma(\sqrt{5})=-\sqrt{5} & \tau(\sqrt{5})=\sqrt{5} \\
\sigma(\sqrt{7})=\sqrt{7} & \tau(\sqrt{7})=-\sqrt{7}
\end{aligned}
$$

It's straightforward to verify that $\sigma^{2}=\tau^{2}=e$ and that σ, τ, and $\sigma \tau$ are all distinct nontrivial automorphisms. Thus the automorphism group must be the Klein V group $\{e, \sigma, \tau, \sigma \tau\}$.
(d) Draw a lattice of all subgroups of $\operatorname{Aut}(K)$, labelling all the connecting edges by the index of one group inside the other.

