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SOME COMMON MISCONCEPTIONS.

1. If L = K () then {1,a} is not necessarily a basis of L! However, {1,a,a?,...,a" 1}
where n := degm, is a basis.

2. Given K/Q and some « of degree 3 over Q, it is not necessarily true that
[K(): K] =1 or 3. For example, if & = w+/2 and K = Q(3/2) then [K(a) : K] = 2.

3. Given some algebraic extension K/Q, there’s no canonical minimal polynomial one
can associate to generators of K. For example, Q(w) = Q(v/—3), but the two minimal
polynomials of these elements are completely different: z? + 2 4+ 1 and 22 + 3. The
only trait they share (which isn’t a coincidence) is their degree.

6.1 Prove that if 2¥ 4 1 is prime, then k& = 2™. [This came up in our discussion of Fermat primes.]

Given 2% +1 a prime number, write k = 2™/ with £ an odd number. Observe that z+1 | z¢+1
(since —1 is root of both), so 22” 4+ 1 | 2¥ 4 1. Since 2 + 1 is prime, 22" +1 = 2F 41,
whence k = 2™.

6.2 Let S := {,/p:pis prime}. Prove that Q(S)/Q is algebraic but infinite.

First, observe that any element a € Q(S) must live in Q(\/p1,+/P2;---,+/Pn) for some

finite list of primes p1,pa,...,pn. Clearly Q(\/p1, /P2, ---,/Pn)/Q is a finite extension (see
below for a precise statement), hence must be algebraic. It follows that « is algebraic over Q.

Next, we prove that Q(S)/Q is infinite. It suffices to prove
Claim. [Q(\/P1,+/D2;---,+/Pn) : Q] = 2" for any set of distinct primes p1,pa, ..., Pn.

Proof. We prove, by induction, that /p ¢ Q(\/p1,\/D2,---,/Pn) for any prime
p & {p1,p2,...,pn}. The claim instantly follows by Tower Law.

The base case n = 0 is simply the assertion that ,/p is irrational. Now set
K = Q(\/Pl, VP25 \/pnfl)v
and suppose that \/p € K(/py,); in particular,

VP =a+byp,

for some a,b € K. Squaring both sides implies /p, € K, contradicting our inductive
hypothesis that \/p, ¢ K. O




6.3 Prove that Q(wv/2) ~ Q(w?¥/2), but Q(wv/2) # Q(w?/2).

6.4

Recall that for any o which is algebraic over K we have
K(a) = Kla] ~ K[t]/(ma)
where m,, denotes the minimal polynomial of « over K.

Observe that all three numbers /2, w+/2,w?+/2 have the same minimal polynomial over Q:
23 — 2. We deduce that

Q(V2) = Q(wV2) =~ Q(w*V2) =~ Q[t]/(t* - 2),
which implies the first part of the question.

Next we prove that Q(w+/2) # Q(w?+/2). Tt suffices to prove
Claim. wv/2 ¢ Q(w?V/2)
Proof. Suppose wv/2 € Q(w?+/2). Then

w%é@(wziﬁ) — %:%e@(ﬁ%).

This implies that Q(w, v/2) € Q(w?+/2). But this opposite inclusion is immediate, whence
Q(w, ¥/2) = Q(w?+/2). But this can’t be the case, since (as we showed in class) the field on
the left hand side has degree 6 over Q, while the field on the right hand side has degree 3.

In class we found four fields lying between Q and Q(w, v/2). Prove that there are no others.

First we prove a quick
Lemma. Given F/Q and « € C such that [F': Q] = [Q(«) : Q]. Then o € F iff F' = Q(«).
Proof. Suppose a € F. Then Q(«) C F, whence by Tower Law we have

[F: Q] = [F: Q()][Q(e) : Q.

Our hypothesis implies [F' : Q(«)] = 1, whence F' = Q(«). The reverse direction is trivial.
O

Continued on next page...




Pick any field F such that Q € F € Q(w, v/2). Since [Q(w, v/2) : Q] = 6, Tower Law implies
that [F': Q] = 2 or 3. We consider two cases:

e [ contains some cube root of 2, say, «.

Then F O Q(«), whence [F : Q] > 3; we deduce [F': Q] = 3. By our lemma, we
conclude that F' = Q(«).

e [ doesn’t contain any cube root of 2.

In this case #3 — 2 is irreducible over F, whence [F(a) : F] = 3 for any a a
cube oot of 2. But F(a) C Q(w, ¥/2), so Tower Law implies [F : Q] = 2. We
claim that w € F. Otherwise, we’d have [F(w) : F] = 2; this would mean that
[F(w) : Q] = 4, which would contradict the Tower Law since F(w) C Q(w, v/2).
Thus w € F. Our lemma immediately gives F' = Q(w).

Putting these two cases together, we conclude that any intermediate field must either be of
the form Q(«) for some « a cube root of 2, or of the form Q(w).

6.5 We imitate the construction of the Galois correspondence from class, but this time with the polynomial
f(z) :=2* — 42% + 2. Let o := /2 + v/2 denote one of the roots of f.
(a) Prove that Q(«) is a splitting field of f.

We need to check two things: that all the roots of f lie in Q(«), and that Q(«) is the
smallest field with this property. The latter claim is clear, since any field in which f splits
must contain a. We thus focus on proving the former claim.

Observe that the roots of f are ++/2 4 /2, so it suffices to prove V2 — /2 € Q(«). Since
a2 -2 = ﬂ, we deduce

2—\/§=§=a2a_2€<@(a).

(b) Draw a lattice of all intermediate fields between Q and Q(«), along with the degrees of each extension.

Q(a)
5 Note that [ is Eisenstein at 2, so it’s irreducible over Q. This
implies [Q(a) : Q] = 4. Next, since v2 € Q(«) but has degree 2
Q(3) over Q, we have an intermediate field Q(v/2).
5 Claim. There are no other intermediate fields.
Proof. See next page...
Q




Proof. Given an intermediate field Q € F € Q(a). By Tower Law, [F: Q] = 2. If V2 € F,
then the lemma from problem 6.4 implies F' = Q(v/2), and we're done. I claim that F must
contain v/2. Indeed, suppose (for the remainder of the proof) that v/2 ¢ F. Below we’ll
construct an element x € F of degree 4 over Q. Since the degree of any element cannot
exceed the degree of its ambient extension, we deduce that [F' : Q] > 4. But this contradicts
our assumption that F' is an intermediate extension.

Since v2 ¢ F, we have [F(v/2) : F] = 2, so Tower Law implies F'(v/2) has degree 4 over Q.
On the other hand, F(v/2) C Q(«), which also has degree 4 over Q, whence F(v/2) = Q(a).

In particular, o € F(v/2), so
V2+V2=2+yV2

for some x,y € F. Squaring both sides and simplifying yields
(1—2zy)V2 =22 + 2% — 2.
Since z,y € F but v/2 € F, the only way this relation could hold is if
2ey =1 and 22 4 2y% = 2.

Substitution shows that 22% — 422 + 1 = 0 which is irreducible over Q (this can be seen by
reduction over Fg, for example). Thus, x has degree 4 over Q. But « € F, which implies F'
itself must have degree at least 4 over Q. Contradiction! O

(c) Determine Aut(Q(«)). What familiar group is it isomorphic to?

I claim the automorphism group is the cyclic group of order 4. To see this, first observe that
any automorphism o € Aut (Q(a)) fixes all rationals, hence is determined by where it sends
a. Note that (a? —2)? = 2; applying o to both sides and using properties of automorphisms

o st {3}

Thus we immediately see that the group Aut (Q(a)) has order 4. But is it the cyclic group
or the Klein V group?

Consider the automorphism 7 € Aut(Q(c)) defined by

() =12 - V2.

Algebraic manipulation implies that T(\/i) = —+/2, from which we deduce

TQ(a)zT( 2—ﬂ)=7<f>:;_f2ﬂ:_a.

We immediately derive

(a) =7(—a) = —\/2 -2 and () = 7*(—a) = a.

4

Thus all of 7,72, 72, 7% are distinct automorphisms. We conclude that

Aut (Q(a)) ={e,7, 7%, 73}




(d) Draw a lattice of all subgroups of Aut(Q(«)), labelling all the connecting edges by the index of one
group inside the other.

{e,7, 72,73}

2

{e.7?}

2

{e}

6.6 Another Galois correspondence, this time for the polynomial g(z) := o* — 1222 + 35.
(a) Determine a splitting field K of g. (Write it in the form Q(f81, 52).)

It’s Q(v/5, V7).

(b) Draw a lattice of all intermediate fields between Q and K, along with the degrees of each extension.

Q(V5,V7)

/ ) \ As above, verifying that all the fields appear-
ing here are distinct isn’t terribly difficult.

Q(v/5) Q(v35) QW) Most of the work goes into proving this is a
complete list. But similar games to the ones
2 2 2 in the previous problem work here as well.
Q

(c) Determine Aut(K). What familiar group is it isomorphic to?

Any automorphism is determined by where it sends v/5 and /7, from which we quickly
deduce that the order of the automorphism group is 4. Is it the cyclic group of the Klein
group? I claim the latter.

Consider the automorphisms defined by

o(v5) = -V5 (V5
(V) = VT N -

It’s straightforward to verify that 02 = 72 = e and that o, 7, and o7 are all distinct nontrivial

automorphisms. Thus the automorphism group must be the Klein V group {e, o, 7,07}.




(d) Draw a lattice of all subgroups of Aut(K), labelling all the connecting edges by the index of one
group inside the other.

{e,o, 7,07}

PR

{e,o} {e,oT} {e,7}

s

{e}




