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(1) (a) (15 points) Prove that lim
x→2

x2− 3x+3 = 1. For this part of the problem you may not use
any theorems from lecture.

Fix ε > 0, and suppose x satisfies

(*) 0 < |x− 2| < min
{
1,
ε

2

}
.

It follows that |x − 2| < 1, i.e. that −1 < x − 2 < 1. Thus, for all x satisfying
(*), we have 0 < x− 1 < 2. On the other hand, (*) implies that |x− 2| < ε

2
, so

|(x2 − 3x+ 3)− 1| = |x− 1| · |x− 2| < 2 · ε
2
= ε.

This proves the claim. �

(b) (10 points) Suppose f : R −→ R satisfies x − 1 ≤ f(x) ≤ x2 − 3x + 3 for all x ∈ R.
Determine (with proof) the value of lim

x→2
f(x). For this part of the problem you may use

any theorems from lecture.

First, note that lim
x→2

x − 1 = 1. [For any ε > 0, we have 0 < |x − 2| < ε =⇒
|(x−1)−1| = |x−2| < ε.] Next, from part (a) we know that lim

x→2
x2−3x+3 = 1.

The squeeze theorem therefore implies that lim
x→2

f(x) exists and is equal to 1.

continued on page 3
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(2) Consider the function
g : R −→ [0, 1)

x 7−→ x2

1 + x2

(a) (5 points) Is g injective? If so, prove it; if not, provide a counterexample.

No, g is not injective. For example, g(1) = 1
2
= g(−1).

(b) (5 points) Is g surjective? If so, prove it; if not, provide a counterexample.

Yes, g is surjective. In other words, for every y ∈ [0, 1), there exists some
real number which gets mapped to y by the function g. To see this, pick an
arbitrary y ∈ [0, 1). Then

√
y

1−y ∈ R, since y ≥ 0 and 1− y > 0. Moreover,

g

(√
y

1− y

)
=

y
1−y

1 + y
1−y

=

y
1−y
1

1−y
= y.

continued on page 5
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(3) (15 points) Let

h(x) :=

{
sinx if x ∈ Q
3 if x 6∈ Q.

Prove that lim
x→2

h(x) does not exist.

We proceed by contradiction. Suppose that the limit does exist, say,

lim
x→2

h(x) = L.

It follows that there exists some constant δ > 0 such that

(†) |h(x)− L| < 1

2
∀x ∈ (2, 2 + δ).

From the density theorem, we know that there exists a rational number a ∈ (2, 2+δ)
and an irrational number b ∈ (2, 2 + δ). The inequality (†) thus implies that

|h(a)− L| < 1

2
and |h(b)− L| < 1

2
so that triangle inequality implies

(‡) | sin a− 3| = |(sin a− L) + (L− 3)| ≤ | sin a− L|+ |L− 3| < 1.

On the other hand, since sin a ≤ 1, we have

| sin a− 3| = 3− sin a ≥ 2,

which contradicts (‡). �

continued on page 6
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(4) (10 points) Prove that

lim
x→∞

3x+ 5

x− 2
= 3.

Pick ε > 0. Then for all x ≥ 100
ε
+ 2 we have∣∣∣∣3x+ 5

x− 2
− 3

∣∣∣∣ = ∣∣∣∣ 11

x− 2

∣∣∣∣
=

11

x− 2
(since x > 2)

≤ 11

100/ε

=
11

100
ε

< ε.

�

continued on page 7
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(5) (10 points) Suppose F : R −→ R (i.e. F (x) is defined for all x ∈ R), and that lim
x→1

F (x) = 2.

Prove that F (x) is bounded in some (nonempty) neighbourhood of 1. [For this problem,
you must prove directly from definitions; i.e. you may not refer to any theorems.]

By the definition of the limit, there exists some number δ > 0 such that

|F (x)− 2| < 1 ∀x ∈ (1− δ, 1 + δ)\{1}.
In particular, it follows that

|F (x)| < 3 ∀x ∈ (1− δ, 1 + δ)\{1}.
Let M := max{3, |F (1)|} (note that F (1) ∈ R by hypothesis). Then we see that in
the open interval (1− δ, 1 + δ), we have

|F (x)| ≤M.

This shows that F (x) is bounded in a nonempty neighbourhood of 1. �

continued on page 8
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(6) (a) (10 points) Use induction to prove that for all N ∈ N,
N∑
n=1

1

2n
= 1− 1

2N
.

The claim is easily verified for N = 1. Suppose it is true for N = k, i.e.
k∑

n=1

1

2n
= 1− 1

2k
.

Adding 1/2k+1 to both sides, we deduce that
k+1∑
n=1

1

2n
= 1− 1

2k
+

1

2k+1
= 1− 1

2k+1
.

In other words, whenever the claim holds with N = k, then it continues to
hold with N = k + 1. By induction, we conclude that the identity holds for
all natural numbers N . �

(b) (15 points) Recall that R≥0 := {r ∈ R : r ≥ 0}. Given a function G : N −→ R≥0, define
∞∑
n=1

G(n) := sup
{ N∑
n=1

G(n) : N ∈ N
}
,

if this supremum exists. Determine (with proof) the value of
∞∑
n=1

1

2n
.

Claim.
∞∑
n=1

1

2n
= 1.

Proof. Combining part (a) with the definition given in the problem, we have
∞∑
n=1

1

2n
:= sup

{
1− 1

2N
: N ∈ N

}
if this supremum exists. It therefore suffices to prove that

sup

{
1− 1

2N
: N ∈ N

}
= 1.

It is clear that 1 is an upper bound of the set S :=

{
1 − 1

2N
: N ∈ N

}
;

moreover, S is clearly nonempty. The Completeness Property of R therefore
implies that the supremum of S exists, so our only remaining task is to prove
that 1 is the least upper bound of S. To do this, we will show that anything
smaller than 1 cannot be an upper bound of S. Indeed, pick any α < 1.
Then 1−α > 0, whence 1

1−α ∈ R. The Archimedean Property guarantees the
existence of a natural number M > 1

1−α . It follows that

2M > M >
1

1− α
,

whence we deduce that α < 1 − 1
2M

. This immediately implies that α is not
an upper bound of S. We therefore conclude that 1 is the least upper bound
of S, as claimed. �

continued on page 9
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