University of Toronto Scarborough

MATA31H3 F: Calculus for Mathematical Sciences I

REFERENCE SHEET

Properties of real numbers

Throughout this course, we assume that there exists a set \mathbb{R} endowed with two binary operations + and \cdot satisfying all the following properties:

Algebraic Properties:

- (A1) $\forall a, b \in \mathbb{R}$, we have a + b = b + a.
- (A2) $\forall a, b, c \in \mathbb{R}$, we have a + (b + c) = (a + b) + c.
- (A3) There exists a number $0 \in \mathbb{R}$ such that $\forall a \in \mathbb{R}$, a + 0 = a.
- (A4) For each $a \in \mathbb{R}$ there exists a number $-a \in \mathbb{R}$ such that a + (-a) = 0.
- (M1) $\forall a, b \in \mathbb{R}$, we have $a \cdot b = b \cdot a$.
- (M2) $\forall a, b, c \in \mathbb{R}$, we have $a \cdot (b \cdot c) = (a \cdot b) \cdot c$.
- (M3) There exists a number $1 \in \mathbb{R}$ such that $\forall a \in \mathbb{R}$, $a \cdot 1 = a$. Moreover, $1 \neq 0$.
- (M4) For each $a \in \mathbb{R} \setminus \{0\}$, there exists a number $a^{-1} \in \mathbb{R}$ such that $a \cdot a^{-1} = 1$.
 - (D) $\forall a, b, c \in \mathbb{R}$, we have $a \cdot (b + c) = a \cdot b + a \cdot c$.

Order Properties: There exists a special subset $\mathcal{P} \subseteq \mathbb{R}$ such that

- (O1) $0 \notin \mathcal{P}$
- (O2) For all $a \in \mathbb{R} \setminus \{0\}$, $a \notin \mathcal{P}$ iff $-a \in \mathcal{P}$.
- (O3) If $a, b \in \mathcal{P}$, then $a + b \in \mathcal{P}$ and $a \cdot b \in \mathcal{P}$.

Completeness Property

(C) If $A \subseteq \mathbb{R}$ is nonempty and bounded above, then there exists a *least* upper bound of A.

NOTATION

 $\sup A$, the *supremum* of A, is the least upper bound of A (if it exists).

inf A, the *infimum* of A, is the greatest lower bound of A (if it exists).

The symbol a-b means a+(-b). The symbol $\frac{a}{b}$ means $a\cdot b^{-1}$.

For all $n \in \mathbb{N}$, we define the symbol $a^{n+1} := a^n \cdot a$, where $a^1 := a$.

Given $a, b \in \mathbb{R}$, the notation a > b means that $a + (-b) \in \mathcal{P}$, and b < a is another way of writing a > b. The symbol $a \ge b$ means that $a + (-b) \in \mathcal{P} \cup \{0\}$, and $b \le a$ means the same as $a \ge b$.

University of Toronto Scarborough

MATA31H3: Calculus for Mathematical Sciences I

MIDTERM EXAMINATION # 2

November 9, 2012

Duration – 2 hours Aids: none

NAME (PRINT):					
,		First/Given Name (and nickname)			
STUDENT NO:			KEY		
TUTORIAL:	Tutorial section	n #	Name	of TA	
	Tutoriai sectioi		rvarre	01 171	
		Qn. #	Value	Score	
		COVER PAGE	5		
		1	20		
		2	20		
		3	12		
		4	18		
		5	15		
		6	10		
		Total	100		
		TOTAL:			
Please read the follow	wing statement a	and sign below:			
I understand that any l signing below, I pledge			lation of	The Cod	e of Behaviour on Academic Matters. By
SIGNATURE:					

- (1) Prove each of the following, explicitly justifying every step of your proof with the appropriate property of \mathbb{R} .
 - (a) (8 points) $2 \cdot 2 = 4$.

We have

$$2 \cdot 2 = 2 \cdot (1+1)$$
 by definition of 2
= $2 \cdot 1 + 2 \cdot 1$ by (D)
= $2 + 2$ by (M3)
= $(1+1) + (1+1)$
= $1 + 1 + 1 + 1$ by (A2)
= 4 by definition of 4 .

(b) (12 points) If $a \in (0, 2)$, then $a^2 < 4$.

If $a \in (0, 2)$, then a > 0 and a < 2, or in other words,

$$a \in \mathcal{P}$$
 and $2 - a \in \mathcal{P}$.

By (O3), we deduce that $a + a \in \mathcal{P}$. Note that

$$(2-a) + (a+a) = 2 + (-a) + a + a$$
 by (A2)
= $2 + 0 + a$ by (A4)
= $2 + a$ by (A3).

Since $2 - a \in \mathcal{P}$ and $a + a \in \mathcal{P}$, (O3) implies that $2 + a \in \mathcal{P}$. Applying (O3) yet again to the two numbers 2 - a and 2 + a, we deduce that

$$(2-a)\cdot(2+a)\in\mathcal{P}.$$

Finally, we have

(*)

$$(2-a) \cdot (2+a) = ((2-a) \cdot 2) + ((2-a) \cdot a) \quad \text{by (D)}$$

$$= (2 \cdot (2-a)) + (a \cdot (2-a)) \quad \text{by (M1)}$$

$$= (2 \cdot 2 + 2 \cdot (-a)) + (a \cdot 2 + a \cdot (-a)) \quad \text{by (D)}$$

$$= 2 \cdot 2 + 2 \cdot (-a) + a \cdot 2 + a \cdot (-a) \quad \text{by (A2)}$$

$$= 4 + 2 \cdot (-a) + a \cdot 2 + a \cdot (-a) \quad \text{by part (a)}$$

$$= 4 + 2 \cdot (-a) + 2 \cdot a + a \cdot (-a) \quad \text{by (M1)}$$

$$= 4 + 2 \cdot ((-a) + a) + a \cdot (-a) \quad \text{by (A1)}$$

$$= 4 + 2 \cdot (a + (-a)) + a \cdot (-a) \quad \text{by (A4)}$$

$$= 4 + 2 \cdot 0 + a \cdot (-a) \quad \text{by proof in lecture}$$

$$= 4 + (a^2 + (-a^2)) + a \cdot (-a) \quad \text{by (A4)}$$

$$= 4 + ((-a^2) + a^2) + a \cdot (-a) \quad \text{by (A1)}$$

$$= 4 - a^2 + a \cdot (a + (-a)) \quad \text{by (D)}$$

$$= 4 - a^2 + a \cdot 0 \quad \text{by (A4)}$$

$$= 4 - a^2 + a \cdot 0 \quad \text{by (A4)}$$

$$= 4 - a^2 + a \cdot 0 \quad \text{by (A4)}$$

$$= 4 - a^2 + a \cdot 0 \quad \text{by (A5)}.$$

Combining this with (*) above, we see that $4-a^2 \in \mathcal{P}$, or equivalently, $a^2 < 4$.

(2) (20 points) Prove that $\sqrt{5}$ exists. In other words, prove that there exists a positive number $x \in \mathbb{R}$ satisfying $x^2 = 5$. [You do *not* need to explicitly use the algebraic and order properties in this problem, or in any of the following problems.]

Let $\mathcal{A} := \{x > 0 : x^2 < 5\}$. Clearly $\mathcal{A} \neq \emptyset$ (since $2 \in \mathcal{A}$). Also, observe that \mathcal{A} is bounded above by 3, since

$$3 < x \Longrightarrow x^2 > 9 \Longrightarrow x \notin \mathcal{A}.$$

Thus, by Completeness, $\sup A$ exists. Let

$$\alpha = \sup \mathcal{A}$$
.

I claim that $\alpha^2 = 5$; this will prove the claim.

Suppose $\alpha^2 < 5$. Note that in this case, $\alpha \in \mathcal{A}$. (α is clearly positive, since it is an upper bound of \mathcal{A} and $2 \in \mathcal{A}$.) Since $\alpha^2 < 5$, we have $\frac{2\alpha+1}{5-\alpha^2} \in \mathbb{R}$. The Archimedean Property therefore implies the existence of a natural number n such that

$$n > \frac{2\alpha + 1}{5 - \alpha^2},$$

from which we deduce that

$$\frac{2\alpha}{n} + \frac{1}{n} < 5 - \alpha^2.$$

Since $\frac{2\alpha}{n} + \frac{1}{n^2} \leq \frac{2\alpha}{n} + \frac{1}{n}$ for all $n \in \mathbb{N}$, we see that

$$\frac{2\alpha}{n} + \frac{1}{n^2} < 5 - \alpha^2,$$

or in other words, that

$$(\alpha + 1/n)^2 < 5.$$

But this means that $\alpha + 1/n \in \mathcal{A}$, contradicting that α is an upper bound of \mathcal{A} .

Next, suppose instead that $\alpha^2 > 5$. Then $\frac{2\alpha}{\alpha^2 - 5} \in \mathbb{R}$, so by Archimedean Property,

$$\exists n \in \mathbb{N} \text{ such that } n > \frac{2\alpha}{\alpha^2 - 5}.$$

It follows that

$$\alpha^2 - \frac{2\alpha}{n} > 5,$$

whence

$$(\alpha - 1/n)^2 > 5.$$

This implies that $\alpha - 1/n$ is an upper bound of \mathcal{A} (for the same reason that 3 was an upper bound). But this contradicts that α is the *least* upper bound of \mathcal{A} .

Thus, both $\alpha^2 < 5$ and $\alpha^2 > 5$ are impossible. By trichotomy, we must have $\alpha^2 = 5$. Since α is positive, this concludes the proof.

(3) (12 points) Prove that 1 is the only real number which satisfies

$$|x-1| < \frac{1}{n^2}$$

for every $n \in \mathbb{N}$.

From the definition of absolute value, we know that $|x-1| \geq 0$ for all $x \in \mathbb{R}$. Suppose $|x-1| \neq 0$. Then $\frac{1}{|x-1|} \in \mathbb{R}$, so the Archimedean Property implies the existence of an $m \in \mathbb{N}$ such that

$$m > \frac{1}{|x-1|}.$$

Since $m^2 \ge m$ for all $m \in \mathbb{N}$, we deduce that

$$m^2 > \frac{1}{|x-1|},$$

which implies that

$$|x-1| > \frac{1}{m^2}.$$

We have therefore shown that if $|x-1| \neq 0$, then x cannot satisfy the given inequality for every $n \in \mathbb{N}$. Thus, if x does satisfy the inequality for every n, we must have |x-1|=0, i.e. x=1.

(4) (18 points) Given $x, y \in \mathbb{R}$ such that 0 < x < y. Prove that there exist $a, b \in \mathbb{N}$ such that a is even, b is odd, and $x < \frac{a}{b} < y$.

Since y > x, we see that $\frac{2}{y-x} \in \mathbb{R}$. By the Archimedean Property, we know that

$$\exists n \in \mathbb{N} \text{ such that } n > \frac{2}{y-x}.$$

Moreover, we may assume that n is odd; if not, add 1 to it (it will still be bigger than $\frac{2}{u-x}$). Note that

(**) ny > 2 + nx.

Let

$$\mathcal{A} := \{k \in \mathbb{N} : k \text{ is even and } k \ge ny\}.$$

By the Well-Ordering Property, \mathcal{A} has a smallest element m. I claim that m-2 is an even natural number which is between nx and ny. The first part of this claim is easy: $m \in \mathcal{A}$ means m is an even integer, so m-2 must also be an even integer. Moreover, (**) implies that m>2, so m-2 must be a natural number. It thus remains to show that $m-2 \in (nx,ny)$.

Since m is the least element of A, $m-2 \notin A$. As discussed above, m-2 is an even natural number, so the only way it could not belong to A is if

$$m-2 < ny$$
.

On the other hand, since $m \in A$, $m \ge ny$, so (**) implies

$$m-2 \ge ny-2 > nx.$$

Combining the above inequalities, we conclude that

$$nx < m - 2 < ny$$
,

which implies

$$x < \frac{m-2}{n} < y.$$

Since m is even, m-2 must also be even, and n is odd from the outset. This concludes the proof.

(5) (15 points) Suppose A and B are nonempty subsets of \mathbb{R} which satisfy

$$a \le b$$
 for all $a \in A$ and $b \in B$.

Prove that $\sup A \leq \inf B$. [Hint: you may find it helpful to prove that $\sup A \leq b$ for any $b \in B$.]

This problem is an example from the reading.

Pick any $b \in B$. By hypothesis, $a \le b$ for all $a \in A$, which means that b is an upper bound of A. Also, $A \ne \emptyset$. Completeness therefore implies that $\sup A$ exists. Moreover, since b is an upper bound of A, we see that $\sup A \le b$.

In the above argument, the choice of $b \in B$ is arbitrary. In other words, we've proved that for *every* $b \in B$,

$$\sup A \le b.$$

Thus, $\sup A$ is a lower bound on B. Since B is nonempty, Completeness implies the existence of $\inf B$. Since $\sup A$ is a lower bound of B, and $\inf B$ is the *greatest* lower bound of B, we deduce that

$$\inf B \ge \sup A$$
.

This concludes the proof.

(6) (10 points) Let f_n denote the n^{th} Fibonacci number, i.e. $f_1=1$, $f_2=1$, and $f_{n+1}=f_n+f_{n-1}$ for all natural numbers $n\geq 2$. Prove that

$$1 \le \frac{f_{n+1}}{f_n} \le 2$$

for all $n \in \mathbb{N}$.

We proceed by induction. Let

$$\mathcal{A}:=\{n\in\mathbb{N}:1\leq\frac{f_{n+1}}{f_n}\leq2\}.$$

Since $\frac{f_2}{f_1} = 1$, we see that $1 \in \mathcal{A}$. We wish to show that every natural number lives in \mathcal{A} .

Suppose $n \in \mathcal{A}$; this implies $1 \leq \frac{f_{n+1}}{f_n} \leq 2$, whence

$$\frac{1}{2} \le \frac{f_n}{f_{n+1}} \le 1.$$

We wish to show that $n + 1 \in A$. We have:

$$\frac{f_{n+2}}{f_{n+1}} = \frac{f_{n+1} + f_n}{f_{n+1}}$$
$$= 1 + \frac{f_n}{f_{n+1}} \in [3/2, 2],$$

where the last step follows from (†). It follows that

$$1 \le \frac{f_{n+2}}{f_{n+1}} \le 2$$

whence $n+1 \in \mathcal{A}$. By Induction, we conclude that $\mathcal{A} = \mathbb{N}$, and thus have proved the claim.

Page intentionally left blank for scratch work.