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UNIVERSITY OF TORONTO SCARBOROUGH

MATA31H3 F : Calculus for Mathematical Sciences I

REFERENCE SHEET

Properties of real numbers

Throughout this course, we assume that there exists a set R endowed with two binary operations + and ·
satisfying all the following properties:

Algebraic Properties:

(A1) ∀a, b ∈ R, we have a+ b = b+ a.

(A2) ∀a, b, c ∈ R, we have a+ (b+ c) = (a+ b) + c.

(A3) There exists a number 0 ∈ R such that ∀a ∈ R, a+ 0 = a.

(A4) For each a ∈ R there exists a number −a ∈ R such that a+ (−a) = 0.

(M1) ∀a, b ∈ R, we have a · b = b · a.

(M2) ∀a, b, c ∈ R, we have a · (b · c) = (a · b) · c.

(M3) There exists a number 1 ∈ R such that ∀a ∈ R, a · 1 = a. Moreover, 1 6= 0.

(M4) For each a ∈ R\{0}, there exists a number a−1 ∈ R such that a · a−1 = 1.

(D) ∀a, b, c ∈ R, we have a · (b+ c) = a · b+ a · c.

Order Properties: There exists a special subset P ⊆ R such that

(O1) 0 6∈ P

(O2) For all a ∈ R\{0}, a 6∈ P iff −a ∈ P .

(O3) If a, b ∈ P , then a+ b ∈ P and a · b ∈ P .

Completeness Property

(C) If A ⊆ R is nonempty and bounded above, then there exists a least upper bound of A.

NOTATION

supA, the supremum of A, is the least upper bound of A (if it exists).

inf A, the infimum of A, is the greatest lower bound of A (if it exists).

The symbol a− b means a+ (−b). The symbol ab means a · b−1.

For all n ∈ N, we define the symbol an+1 := an · a, where a1 := a.

Given a, b ∈ R, the notation a > b means that a+ (−b) ∈ P , and b < a is another way of writing a > b. The
symbol a ≥ b means that a+ (−b) ∈ P ∪ {0}, and b ≤ a means the same as a ≥ b.
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(1) Prove each of the following, explicitly justifying every step of your proof with the appro-
priate property of R.

(a) (8 points) 2 · 2 = 4.

We have
2 · 2 = 2 · (1 + 1) by definition of 2

= 2 · 1 + 2 · 1 by (D)
= 2 + 2 by (M3)
= (1 + 1) + (1 + 1)

= 1 + 1 + 1 + 1 by (A2)
= 4 by definition of 4.

(b) (12 points) If a ∈ (0, 2), then a2 < 4.

If a ∈ (0, 2), then a > 0 and a < 2, or in other words,

a ∈ P and 2− a ∈ P .
By (O3), we deduce that a+ a ∈ P . Note that

(2− a) + (a+ a) = 2 + (−a) + a+ a by (A2)
= 2 + 0 + a by (A4)
= 2 + a by (A3).

Since 2 − a ∈ P and a + a ∈ P , (O3) implies that 2 + a ∈ P . Applying (O3)
yet again to the two numbers 2− a and 2 + a, we deduce that

(*) (2− a) · (2 + a) ∈ P .
Finally, we have

(2− a) · (2 + a) =
(
(2− a) · 2

)
+
(
(2− a) · a

)
by (D)

=
(
2 · (2− a)

)
+
(
a · (2− a)

)
by (M1)

=
(
2 · 2 + 2 · (−a)

)
+
(
a · 2 + a · (−a)

)
by (D)

= 2 · 2 + 2 · (−a) + a · 2 + a · (−a) by (A2)
= 4 + 2 · (−a) + a · 2 + a · (−a) by part (a)
= 4 + 2 · (−a) + 2 · a+ a · (−a) by (M1)

= 4 + 2 ·
(
(−a) + a

)
+ a · (−a) by (D)

= 4 + 2 ·
(
a+ (−a)

)
+ a · (−a) by (A1)

= 4 + 2 · 0 + a · (−a) by (A4)
= 4 + 0 + a · (−a) by proof in lecture

= 4 +
(
a2 + (−a2)

)
+ a · (−a) by (A4)

= 4 +
(
(−a2) + a2

)
+ a · (−a) by (A1)

= 4− a2 + a2 + a · (−a) by (A2)

= 4− a2 + a ·
(
a+ (−a)

)
by (D)

= 4− a2 + a · 0 by (A4)

= 4− a2 + 0 by proof from lecture

= 4− a2 by (A3).

Combining this with (*) above, we see that 4−a2 ∈ P , or equivalently, a2 < 4.
�

continued on page 3
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(2) (20 points) Prove that
√
5 exists. In other words, prove that there exists a positive number

x ∈ R satisfying x2 = 5. [You do not need to explicitly use the algebraic and order proper-
ties in this problem, or in any of the following problems.]

Let A := {x > 0 : x2 < 5}. Clearly A 6= ∅ (since 2 ∈ A). Also, observe that A is
bounded above by 3, since

3 < x =⇒ x2 > 9 =⇒ x 6∈ A.
Thus, by Completeness, supA exists. Let

α = supA.
I claim that α2 = 5; this will prove the claim.

Suppose α2 < 5. Note that in this case, α ∈ A. (α is clearly positive, since it is an
upper bound of A and 2 ∈ A.) Since α2 < 5, we have 2α+1

5−α2 ∈ R. The Archimedean
Property therefore implies the existence of a natural number n such that

n >
2α + 1

5− α2
,

from which we deduce that
2α

n
+

1

n
< 5− α2.

Since 2α
n
+ 1

n2 ≤ 2α
n
+ 1

n
for all n ∈ N, we see that

2α

n
+

1

n2
< 5− α2,

or in other words, that
(α + 1/n)2 < 5.

But this means that α + 1/n ∈ A, contradicting that α is an upper bound of A.

Next, suppose instead that α2 > 5. Then 2α
α2−5 ∈ R, so by Archimedean Property,

∃n ∈ N such that n >
2α

α2 − 5
.

It follows that
α2 − 2α

n
> 5,

whence
(α− 1/n)2 > 5.

This implies that α − 1/n is an upper bound of A (for the same reason that 3 was
an upper bound). But this contradicts that α is the least upper bound of A.

Thus, both α2 < 5 and α2 > 5 are impossible. By trichotomy, we must have α2 = 5.
Since α is positive, this concludes the proof. �

continued on page 4
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(3) (12 points) Prove that 1 is the only real number which satisfies

|x− 1| < 1

n2

for every n ∈ N.

From the definition of absolute value, we know that |x − 1| ≥ 0 for all x ∈ R.
Suppose |x − 1| 6= 0. Then 1

|x−1| ∈ R, so the Archimedean Property implies the
existence of an m ∈ N such that

m >
1

|x− 1|
.

Since m2 ≥ m for all m ∈ N, we deduce that

m2 >
1

|x− 1|
,

which implies that

|x− 1| > 1

m2
.

We have therefore shown that if |x−1| 6= 0, then x cannot satisfy the given inequal-
ity for every n ∈ N. Thus, if x does satisfy the inequality for every n, we must have
|x− 1| = 0, i.e. x = 1. �

continued on page 5
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(4) (18 points) Given x, y ∈ R such that 0 < x < y. Prove that there exist a, b ∈ N such that a is
even, b is odd, and x < a

b
< y.

Since y > x, we see that 2
y−x ∈ R. By the Archimedean Property, we know that

∃n ∈ N such that n >
2

y − x
.

Moreover, we may assume that n is odd; if not, add 1 to it (it will still be bigger
than 2

y−x ). Note that

(**) ny > 2 + nx.

Let
A := {k ∈ N : k is even and k ≥ ny}.

By the Well-Ordering Property, A has a smallest element m. I claim that m − 2 is
an even natural number which is between nx and ny. The first part of this claim
is easy: m ∈ A means m is an even integer, so m − 2 must also be an even integer.
Moreover, (**) implies that m > 2, so m − 2 must be a natural number. It thus
remains to show that m− 2 ∈ (nx, ny).

Since m is the least element of A, m− 2 6∈ A. As discussed above, m− 2 is an even
natural number, so the only way it could not belong to A is if

m− 2 < ny.

On the other hand, since m ∈ A, m ≥ ny, so (**) implies

m− 2 ≥ ny − 2 > nx.

Combining the above inequalities, we conclude that

nx < m− 2 < ny,

which implies

x <
m− 2

n
< y.

Since m is even, m − 2 must also be even, and n is odd from the outset. This
concludes the proof. �

continued on page 6
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(5) (15 points) Suppose A and B are nonempty subsets of R which satisfy

a ≤ b for all a ∈ A and b ∈ B.
Prove that supA ≤ inf B. [Hint: you may find it helpful to prove that supA ≤ b for any b ∈ B.]

This problem is an example from the reading.

Pick any b ∈ B. By hypothesis, a ≤ b for all a ∈ A, which means that b is an upper
bound of A. Also, A 6= ∅. Completeness therefore implies that supA exists. More-
over, since b is an upper bound of A, we see that supA ≤ b.

In the above argument, the choice of b ∈ B is arbitrary. In other words, we’ve
proved that for every b ∈ B,

supA ≤ b.

Thus, supA is a lower bound on B. Since B is nonempty, Completeness implies
the existence of inf B. Since supA is a lower bound of B, and inf B is the greatest
lower bound of B, we deduce that

inf B ≥ supA.

This concludes the proof. �

continued on page 7



Midterm Exam # 2 MATA31H3 page 7 of 8

(6) (10 points) Let fn denote the nth Fibonacci number, i.e. f1 = 1, f2 = 1, and fn+1 = fn + fn−1
for all natural numbers n ≥ 2. Prove that

1 ≤ fn+1

fn
≤ 2

for all n ∈ N.

We proceed by induction. Let

A := {n ∈ N : 1 ≤ fn+1

fn
≤ 2}.

Since f2
f1

= 1, we see that 1 ∈ A. We wish to show that every natural number lives
in A.

Suppose n ∈ A; this implies 1 ≤ fn+1

fn
≤ 2, whence

(†) 1

2
≤ fn
fn+1

≤ 1.

We wish to show that n+ 1 ∈ A. We have:
fn+2

fn+1

=
fn+1 + fn
fn+1

= 1 +
fn
fn+1

∈ [3/2, 2],

where the last step follows from (†). It follows that

1 ≤ fn+2

fn+1

≤ 2

whence n + 1 ∈ A. By Induction, we conclude that A = N, and thus have proved
the claim. �

continued on page 8
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