UNIVERSITY OF TORONTO SCARBOROUGH

$\begin{array}{c} \text{MARCH 2010 MIDTERM EXAMINATION} \\ \text{MATA32H3 S} \end{array}$

Calculus for Management I Leo Goldmakher Duration-2 hours Aids: calculator

NAME (PRINT):			
,	Last/Surname	First/Given Name	
STUDENT NO:		Name of TA:	
Please read the following	statement and sign be	elow:	
· ·	•	grity is a violation of The Code of low, I pledge to abide by the Code.	
SIGNATURE:			

Qn. #	Value	Score
1	10	
2	20	
3	10	
4	12	
5	18	
6	15	
Total	85	

You may find the following formulas helpful:

$$a + ar + ar^{2} + \dots + ar^{N-1} = a \times \frac{1 - r^{N}}{1 - r}$$

$$P(x) = P_{0} \left(1 + \frac{r}{N} \right)^{Nx}$$

$$P_{\text{cont}}(x) = P_{0}e^{rx}$$

(1) Given a constant k, let

$$f(x) = \begin{cases} 3x + 2k^2 & \text{for } x < 5\\ x^2 + 2k + 2 & \text{for } x \ge 5 \end{cases}$$

Find all values of k for which f(x) is a continuous function. Show all relevant work.

10 points

20 points

- (2) You wish to buy a car which is currently selling for \$20,000. Since you don't have that much money to spend, you make the following arrangement with the seller:
 - (i) You pay \$5000 upfront.
 - (ii) You pay off the balance in equal monthly installments, paid at the end of every month for the next two years, at an interest rate of 12% APR compounded monthly.
 - a) How much is the first installment? (Show all work.)

b) What is the finance charge? (Recall that the finance charge is the total interest paid.)

 $10\ points$

(3) Determine the least number of months required for a principal of P dollars to increase by 50% at an 8% APR compounded semiannually. (Show all work.)

- (4) Suppose you owe someone \$8,000. You agree to pay off the debt according to the following plan:
 - (i) you pay \$1000 at the end of the first year;
 - (ii) you pay \$3000 at the end of the 3rd year;
 - (iii) you pay the rest at the end of the 6th year.

Assume an interest of 10% APR compounded semiannually. What is the amount of the final payment? (Show all work.)

12 points

3 points each

- (5) Let $g(x) = \sqrt{\frac{2^x 2}{x 2}}$. For each of the following, choose the most appropriate answer. You do not need to justify your choice.
 - $i) \lim_{x \to 0} g(x) = \underline{\hspace{1cm}}$
 - (a) 0 (b) 1 (c) 2 (d) $\sqrt{\frac{1}{2}}$ (e) $\sqrt{2}$ (f) ∞ (g) $-\infty$ (h) none of the above.
 - $ii) \lim_{x \to 1} g(x) = \underline{\hspace{1cm}}$
 - (a) 0 (b) 1 (c) 2 (d) $\sqrt{\frac{1}{2}}$ (e) $\sqrt{2}$ (f) ∞ (g) $-\infty$ (h) none of the above.
 - iii) $\lim_{x \to 2^{-}} g(x) =$ _____
 - (a) 0 (b) 1 (c) 2 (d) $\sqrt{\frac{1}{2}}$ (e) $\sqrt{2}$ (f) ∞ (g) $-\infty$ (h) none of the above.
 - iv) $\lim_{x \to 2^+} g(x) =$ _____
 - (a) 0 (b) 1 (c) 2 (d) $\sqrt{\frac{1}{2}}$ (e) $\sqrt{2}$ (f) ∞ (g) $-\infty$ (h) none of the above.
 - $v) \lim_{x \to -\infty} g(x) = \underline{\hspace{1cm}}$
 - (a) 0 (b) 1 (c) 2 (d) $\sqrt{\frac{1}{2}}$ (e) $\sqrt{2}$ (f) ∞ (g) $-\infty$ (h) none of the above.
 - vi) $\lim_{x \to \infty} g(x) = \underline{\hspace{1cm}}$
 - (a) 0 (b) 1 (c) 2 (d) $\sqrt{\frac{1}{2}}$ (e) $\sqrt{2}$ (f) ∞ (g) $-\infty$ (h) none of the above.

(6) Suppose that the amount of Carbon-14 present in an old wooden tool is 20% of the amount the tool originally contained (i.e. when it was made). Given that the amount of Carbon-14 in inanimate objects decays exponentially and has a half life of 5730 years, estimate the age of the tool. Show all work.

 $15\ points$

Scratch paper.