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Suppose a function F (x) satisfies F ′(a) = 0. In many situations, it is easy to determine whether
F has a maximum, minimum, or neither at a by considering the behaviour of the derivative F ′

slightly to the left and right of a. For example, we saw in lecture that the function F (x) = 1
1+x2

must have a maximum at 0, since F ′(x) > 0 for all x < 0 (so F is increasing to the left of 0), and
F ′(x) < 0 for all x > 0 (so F is decreasing to the right of 0).

This approach always works in principle, but is occasionally difficult in practice, as we saw with
the example g(x) = x5+10x3−80x+2. We determined easily enough that g′(x) = 0 iff x = ±

√
2.

The next natural question is, what is the behaviour of g at these points? In principle, one can do the
same procedure as above: determine the behaviour of g′(x) slightly to the right and left of ±

√
2,

and go from there. This is not so easy to do without a calculator! However, there’s a trick. Instead
of considering the first derivative near

√
2, for example, we considered the second derivative at√

2. We have g′′(x) = 20x(x2 + 3), whence g′′(
√
2) > 0. This tells us that g′(x) is increasing in

a neighbourhood of
√
2. Since g′(

√
2) = 0, we deduce that g′(x) < 0 for x slightly less than

√
2,

and g′(x) > 0 for x slightly larger than
√
2. This in turn implies that g is decreasing to the left of√

2, and increasing to the right of
√
2. So, g must have a minimum at

√
2!

More generally, we have the following theorem:

Theorem (Second Derivative Test). Suppose g′(a) = 0 and g′′(a) > 0. Then g has a local
minimum at a. Similarly, if g′(a) = 0 and g′′(a) < 0, then g has a local maximum at a.

Here’s a not entirely rigorous proof of this. It is a great exercise to think through how to make it
completely formal. After doing this on your own, check out Spivak’s version of the proof.

“Proof”. Suppose g′′(a) > 0. Then g′(x) is increasing at a. It follows that for all x slightly to the
left of a, g′(x) < g′(a), and for all x slightly to the right of a, g′(x) > g′(a). Since g′(a) = 0,
this means g′(x) < 0 for x slightly less than a, and g′(x) > 0 for x slightly larger than a. But this
implies that g is decreasing to the left of a, and increasing to the right of a. Finally, we deduce that
g must have a minimum at a.

A similar argument gives the corresponding result when g′′(a) < 0. “QED”
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