UNIVERSITY OF TORONTO SCARBOROUGH

MATA37H3: Calculus for Mathematical Sciences II

MIDTERM EXAMINATION #1

January 30, 2012

Duration – 2 hours Aids: none

NAME (PRINT):	SOLUTION KEY Last/Surname First/Given Name						
STUDENT NO:							_
TUTORIAL:	Tutorial section		-	Name o	of TA		_
	(Number or Schedu	ıle)					
		Qn. #	Value	Score]		
		1	12		_		
		2	10		_		
		3	18 20		_		
		5	20		_		
		6	20		-		
		Total	100				
	7	ΓΟΤΑL	:				
Please read the follow	ving statement and s	ign belo	ow:				
I understand that any i signing below, I pledge		egrity is a	a violatio	on of The	e Code of Beha	viour on Acı	ıdemic Matters. I
SIGNATURE							

(1) (12 points) On the axes below are graphed f, f', and f''. Determine which is which, and justify your response with a brief explanation.

 $I: \underline{f}$

II : <u>f'</u>

III: **f**"

Explanation:

The derivative of function III is negative to the left of x=B and positive to the right; since neither I nor II behave this way, III must be f''. This tells us that f'' is 0 at x=A. The derivative of I is negative at x=A, while the derivative of II is zero; this shows that II must be f'. This in turn implies that I must be f.

(2) (10 points) Suppose f is a function with f(2)=1 and f'(2)=-5. Use this information to approximate f(2.1). Justify your answer.

The tangent line to f at 2 is L(x)=-5(x-2)+1. Since 2.1 is fairly close to 2, it's reasonable to expect that L(2.1) will be a good approximation to f(2.1). Thus, we conclude that $f(2.1)\approx 0.5$

- (3) For this problem, assume that f and g are functions such that both $\lim_{x\to\infty} f(x)$ and $\lim_{x\to\infty} g(x)$ exist.
 - (a) (10 points) Prove that if $f(x) \leq g(x)$ for all x, then $\lim_{x \to \infty} f(x) \leq \lim_{x \to \infty} g(x)$.

Let $L_f:=\lim_{x\to\infty}f(x)$ and $L_g:=\lim_{x\to\infty}g(x)$, and suppose $L_f-L_g=\epsilon>0$. By definition of the limit, there exists an $x_f\in\mathbb{R}$ such that $|f(x)-L_f|<\epsilon/10$ for all $x>x_f$, and an $x_g\in\mathbb{R}$ such that $|g(x)-L_g|<\epsilon/10$ for all $x>x_g$. Set $x_0=\max\{x_f,x_g\}$. Then for any $x>x_0$ we have

$$f(x) > L_f - \epsilon/10 > L_g + \epsilon/10 > g(x).$$

But this contradicts our hypothesis that $f(x) \leq g(x)$.

- (b) (8 points) Does (a) hold if we replace all instances of \leq by <? In other words, if f(x) < g(x) for all x, must it be true that $\lim_{x \to \infty} f(x) < \lim_{x \to \infty} g(x)$? If so, prove it. If not, give an example.
 - (a) does not hold with strict inequalities. For example, $1-1/(1+x^2)<1$ for all $x\in\mathbb{R}$, while

$$\lim_{x\to\infty}1-\frac{1}{1+x^2}=1=\lim_{x\to\infty}1.$$

(4) (20 points) Suppose f is a function satisfying f(0)=f'(0)=0. Prove that there exists an open interval I such that $0 \in I$ and $|f(x)| \leq \frac{|x|}{100}$ for all $x \in I$.

By definition of the derivative, we have

$$0 = f'(0) = \lim_{h \to 0} \frac{f(h) - f(0)}{h} = \lim_{h \to 0} \frac{f(h)}{h}.$$

By definition of the limit, there must exist $\delta>0$ such that

$$\left|\frac{f(x)}{x}\right| < \frac{1}{100}$$

for all x satisfying $0 < |x| < \delta$. Let I denote the interval $(-\delta, \delta)$. From (*), any nonzero $x \in I$ satisfies |f(x)| < |x|/100. Moreover, we have f(0) = 0. The claim follows.

(5) (20 points) Prove that $\cos x$ is continuous on \mathbb{R} . You may use any result proved in class.

We proved in class that $\cos x$ is differentiable everywhere. We also proved that if a function is differentiable at a point, it must be continuous at that point. It follows that $\cos x$ is continuous everywhere.

- (6) Let $f(x) = \cos x$ where x is in degrees.
 - (a) (10 points) Is f'(90) positive, negative, or zero? Justify your answer.

For this problem, denote by $\cos_d y$ the function which gives the cosine of y degrees, and by $\cos_r y$ the function which gives the cosine of y radians, and similarly for the sine function. We have $f(x) := \cos_d(x)$; set $g(x) := \cos_r(x)$. Note that $f(x) = g\left(\frac{\pi}{180}x\right)$. Also, from class, we know that $g'(x) = -\sin_r(x)$.

By definition, we have

$$f'(90) = \lim_{h \to 0} \frac{f(90+h) - f(90)}{h} = \lim_{h \to 0} \frac{f(90+h)}{h}.$$

Now, $f(90 + h) = g(\pi/2 + \pi h/180)$. It follows that

$$f'(90) = \lim_{h \to 0} \frac{g\left(\frac{\pi}{2} + \frac{\pi}{180}h\right)}{h}$$

$$= \frac{\pi}{180} \lim_{h \to 0} \frac{g\left(\frac{\pi}{2} + \frac{\pi}{180}h\right)}{\frac{\pi}{180}h}$$

$$= \frac{\pi}{180} \lim_{k \to 0} \frac{g\left(\frac{\pi}{2} + k\right)}{k}$$

$$= \frac{\pi}{180} g'(\frac{\pi}{2})$$

$$= \frac{\pi}{180} \left(-\sin_r(\frac{\pi}{2})\right)$$

$$= -\frac{\pi}{180}$$

where the passage from the limit as $h\to 0$ to the limit as $k\to 0$ is justified by the lemma proved in lecture: if c is a constant and G is a function such that $\lim_{h\to 0}G(h)$ exists, then

$$\lim_{h \to 0} G(ch) = \lim_{k \to 0} G(k).$$

Finally, we conclude that f'(90) < 0.

(b) (10 points) Is |f'(90)| larger, smaller, or equal to 1/2? Justify your answer.

From above, $|f'(90)| = \frac{\pi}{180} < 1/2$.

Page intentionally left blank for scratch work.