ADDITIVE COMBINATORICS: LECTURE 1

LEO GOLDMAKHER

We started by discussing administrative matters. The most salient ones:

(1) Please address me by name, preferably ‘Leo’.

(2) My email is 1lgoldmak@math.toronto.edu

(3) The course webpage is www.math.toronto.edu/lgoldmak/APM461/

(4) T will assume that you have had exposure to elementary analysis (¢ — ¢ proofs), elementary
number theory (modular arithmetic), and elementary algebra (basics of groups, rings, and
fields). If you’re not sure whether or not you have adequate preparation, email me and we
can discuss whether the course is appropriate for you.

(5) There will be no exam in this course; your mark will depend exclusively on homework and
a final project (the precise nature of which will be determined later).

Before explaining what additive combinatorics is, we warmed up with some puzzles about sets of
numbers. More precisely, given A, B C 7Z, set

A+B:={a+b:ac Abe B} A—B:={a—-b:a€ Abe B}

A-B:={a-b:acAbe B} A+B:={a+b:ac Abe B}.
(In the last operation, we assume that 0 ¢ B.) A simple example: if A = {2,5,12} and B = {0, 3},
then

A+ B =1{2,512,5,8,15}.
Of course, it’s silly to write 5 twice, so really we have
A+ B =1{2,5,8,12,15}.

Thus A + B is not as big as it potentially could be, because there are redundancies. (Observe that
if there were no coincidences, then A + B would have | A| - | B| distinct elements.)

Occasionally, the number of redudancies can be extreme. For example, let A = {1,2,3,...,n}.
Then

A+A={23,...,2n}

So rather than the posible ~ %nz distinct elements', A + A only has 2n — 1 distinct elements. In
other words, there are an extreme number of coincidences in A + A for the above choice of A.
We next observed that for the above choice of A, the set A — A is also unusually small:

A—A={0,+1,42,...,+(n—1)}

has 2n — 1 distinct elements, the exact same number as in A + A. Is this a coincidence?
Before continuing to explore this set, we make a convenient notation for it:

n] :={1,2,...,n}.
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! Addition is commutative, so A + A can’t have more than n(n + 1)/2 ~ #n? distinct elements.



We saw above that both [n] + [n] and [n] — [n] are small sets. What about [n] - [n]? This proved
to be a more difficult problem. By definition,

n] - [n] ={ab:1<a,b<n},

but saying anything more explicit about it seems difficult. By considering the n x n multiplication
table (alternatively, the ‘Gal matrix’), we see that |[n] - [n]| < n?. More precisely, by symmetry of
the table (i.e. commutativity of multiplication), we have

i )] < %n(n — ).

Thinking about this problem in terms of multiplication tables is visually appealing. In this lan-
guage, we are trying to determine how many distinct entries appear in an n. X n multiplication
table. This question, called the multiplication table problem, was first tackled by the great Hungar-
ian mathematician Erd6s, who proved that

] - In]| = o(n?).
(Recall that f(z) = o(g(x)) means that % — 0 as x — 00.) In fact, much more precise results
are known. For example, there exists a constant 6 > 0 such that
2
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where f(x) < g(x) means exactly the same thing as f(z) = O(g(:c)), which in term means
exactly the same thing as % is bounded for all ‘reasonable’ values of x. (Note that this differs

from the typical CS use of big Oh notation, which implicitly assumes that the input is large.) The
strongest result we have on this problem, due to Kevin Ford (see his paper in Annals of Mathemat-
ics, 2008), is the asymptotic

n2

(log n)?(loglogn)3/2’

where § ~ 0.08 can be written down exactly. (The notation f(z) =< g(z) means f(z) < g(z) < f(x).)
So much for upper bounds on the size of [n] - [n]. What about lower bounds? After some

brainstorming, we realized that the multiplication table of primes up to n has all distinct entries, up

to symmetry: if we throw away all the entries above the main diagonal, all the remaining entries

are distinct. This shows that

In] - In]| =

1
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where m(n) denotes the number of primes less than or equal to n. (For example, 7(7.3) = 4.)
This is a nice-looking lower bound, but unless we can say something about primes, it’s useless.
Fortunately, quite a bit is known about the distribution of primes. In particular, one of the great
achievements of analytic number theory is the following:

Theorem 1 (Prime Number Theorem). 7(z) ~ @, where log denotes the natural logarithm.



Here the notation f(z) ~ g(x) means
be equivalently restated in the form

() z_ x
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as a main term and an error term which is small relative to the main term. Getting a more precise
estimate of this form is a one of the major open problems in analytic number theory today. It turns
out that a better approximation (conjectured by Gauss) to 7(z) is
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o 1 as x — oo. Thus, the prime number theorem can
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small? This is perhaps the most notorious conjecture in mathematics:

Conjecture 2 (Riemann Hypothesis).
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Unfortunately, even the most sophisticated methods available give pathetic approximations to this
conjecture. For example, it is an open problem to prove the existence of a > 0 such that the error
term in (2) is < 9.
In any event, we deduce from the prime number theorem and our earlier insight about multipli-

cation tables that
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Even though no one knows a precise formula for the size of [n] - [n], the upper and lower bounds

(1) and (3) give a reasonably accurate idea of how it grows with n, which we can crudely express
in the form

1] - [n]| > w(n)? >

where o(1) — 0 as n — oo.
EXERCISE 1: What can you say about the set [n] < [n]?

In summary, we’ve seen that [n] 4 [n] is tiny — in fact, it is as small as possible — while [n] - [n] is
essentially as large as possible. This can be colloquially interpreted as saying that [n] has a lot of
structure with respect to addition, and behaves randomly with respect to multiplication. Are there
sets which have a lot of structure with respect to multiplication, instead? A bit of thought leads to
the following set:

olnl .= {20 ot 22 on-11
EXERCISE 2:

(a) Describe the set 2" - 2[" and prove that it has < n elements.

(b) Describe the set 21" 4 2l and prove that it has > n? elements.

(c) Describe the set 2" — 2["], and prove that it has > n? elements.

(d) Describe the set 2" = 2["] and prove that it has < n elements.



Thus, [n] is structured with respect to addition and random with respect to multiplication, while
2[7 is structured with respect to multiplication and random with respect to addition. Are there
sets which are random with respect to both addition and multiplication? Sure — actually, most sets
are. A more interesting question is whether there are any sets which are structured with respect to
both addition and multiplication. Erd6s and Szemerédi conjectured that the answer is no. More
precisely:

Conjecture 3 (Erd6s-Szemerédi). Given any A C 7Z, we have
max{|A+ A|,|A- A} = |APP W,
This conjecture is wide open. The strongest result towards it is the following:
Theorem 4 (Solymosi, Adv. in Math, 2009). Given any A C R, we have
max{|A+ A, |A- A} > |A[*/37o0)

This tells us that any finite set of real numbers must be somewhat random with respect to multipli-
cation or addition (or both!).> Actually, Solymosi proved a much stronger result.

Theorem 5 (Solymosi, Adv. in Math, 2009). Given any A, B C R, we have
[AP*|B?

|AB|-|A+ A|-|B+B|>» —————.
log (4] - |B])

Taking A = B in the above theorem yields the lower bound
|A[*
log |A|"

which immediately implies Theorem 4. But it also implies more.

AA]-[A+ AP > )

Corollary 6. Suppose A C R has a lot of multiplicative structure, in the sense that |AA| < |A.
Then |A + Al > |A]3/2—o0),

More impressively, we deduce

Corollary 7. Suppose A C R has a lot of additive structure, in the sense that |A + A| < |A|.
Then |AA| = | A2,

This result provides some theoretical evidence for the Erdés-Szemerédi conjecture, although of
course it is a rather special case. It also demonstrates that Solymosi’s lower bound (4) is essentially
optimal.

It is difficult to assess the strength of Corollary 7. Certainly its conclusion is very strong, but
how restrictive is the hypothesis? Later this term we will see that it is very restrictive: there are few
sets which are highly structured with respect to addition. We postpone giving a precise statement,
but roughly, we will prove the following.

Theorem 8 (Freiman-Ruzsa). Suppose A C 7 is highly structured with respect to addition, in the
sense that |A + A| < |A|. Then A ‘looks like’ an arithmetic progression.

2Konyagin and Rudnev have recently extended this result to all subsets of C; their paper is available on the arXiv.



This fundamental result was discovered and proved by G. Freiman in the 1960s. However, the the-
orem was a bit ahead of its time, and Freiman’s proof was quite complicated. A few decades later,
I. Ruzsa discovered a much easier (and beautiful!) proof of Freiman’s result; Ruzsa’s proof ignited
widespread interest in the subject. A couple of years ago, G. Petridis introduced an innovation
which shortened the proof further.

It’s worth pointing out that the converse to the Freiman-Ruzsa theorem is also true: if A looks like
an arithmetic progression, then | A+ A| will be tiny. To get a feel for this, consider A := {5n : n < N}.
Then A = 5[N], whence

A+ Al = [5(IN] + [N])| = [V + [M]| = 28 = 1 < |4,

Thus, the Freiman-Ruzsa theorem colloquially asserts that the only subsets of Z which are highly
structured with respect to addition are arithmetic progressions.

One might imagine an analogous statement for sets which are highly structured with respect to
multiplication: A C 7 satisfies |AA| < |A| iff A looks like a geometric progression. Since no
set of integers can simultaneously look like an arithmetic progression and a geometric progression,
at least one of |[AA| and |A + A| must be decently large. Actually, this is just a restatement of
our earlier intuition for the Erd6s-Szemerédi conjecture: no set should be highly structured with
respect to both addition and multiplication.

Next lecture, we will prove Solymosi’s theorem, and indicate a proof of Erdds’ multiplication
table problem. We will then reconsider the results of this lecture in the context of a general field —
a maneuver which will allow us to develop applications to computer science.
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