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Recall our discussion of Erdős’s multiplication table problem: how many different numbers are there in the
N ×N multiplication table? Erdős discovered that the answer is o(N2). That is, if A(N) is the number of
different integers in the N ×N multiplication table, then as N →∞ we have A(N)/N2 → 0.

Theorem (Erdős). The number of distinct entries appearing in the N × N multiplication table, denoted
A(N), is in o(N2).

We shall sketch a proof of this theorem. The overarching idea is to look at the number of distinct prime
factors of integers up toN2. Almost all such numbers have≈ log logN∗ prime factors, while almost all entries
in the multiplication table have ≈ 2 log logN prime factors. We introduce the notation ω(n) =

∑
p|n 1, the

number of distinct prime factors of n. Note that the behaviour of ω(n) is very hard to predict. Particularly,
from time to time it simply equals 1 (whenever we hit a prime). Instead of trying to predict ω(n), we can
describe its average behaviour.

Lemma 1.
1

x

∑
n≤x

ω(n) = log log x+O(1).

The proof of this lemma relies on Euler’s famous result that the sum of the reciprocal of primes diverges.

Lemma (Euler). ∑
p≤x

p prime

1

p
= log log x+O(1).

Proof of Lemma 1. In the following calculation we take p to be a prime. We calculate:

1

x

∑
n≤x

ω(n) =
1

x

∑
n≤x

∑
p|n

1 =
1

x

∑
p≤x

∑
n≤x
p|n

1 =
1

x

∑
p≤x

∑
d≤x

p

1 =
1

x

∑
p≤x

⌊
x

p

⌋
=

1

x

∑
p≤x

(
x

p
+O(1)

)

=
1

x

∑
p≤x

x

p
+O

1

x

∑
p≤x

1

 =
∑
p≤x

1

p
+O

(
π(x)

x

)
= log log x+O(1).

Recall that π(x) denotes the number of primes ≤ x, so that π(x)/x ∈ O(1).

Now since log log x grows extremely slowly, the upshot of Lemma 1 is that for “most” n ≤ x we have
log log n ≈ log log x and therefore ω(n) ≈ log log n. This intuitive reasoning is made precise by a famous
theorem of Hardy and Ramanujan, sometimes referred to as Hardy-Ramanujan normal order theorem.

Theorem (Hardy-Ramanujan, 1917). Let ε > 0. Then for almost every n,

ω(n) = log log n+Oε

(
(log log n)

1
2
+ε
)

∗Recall that in this class log x is the natural logarithm lnx.
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The phrase “for almost every n” means that the number of exceptions is tiny; more precisely, the number
of n ≤ x for which the theorem fails to hold is o(x).

In 1934, the Hungarian mathematician Pál Turán (who also frequently collaborated with Erdős) gave a
simpler proof of the above theorem. His statement of the theorem is also more immediately usable for our
purposes.

Theorem (Turán, 1934).
1

x

∑
n≤x

(ω(n)− log log x)2 � log log x

These theorem(s) characterize the error in our approximation, which is sufficiently small. To conclude we
now have that for almost every n ≤ N2

ω(n) ≈ log logN2 = log(2 logN) = log 2 + log logN ≈ log logN.

By contrast, we expect almost every entry appearing in the multiplication table to have roughly double
that number of distinct prime factors, since ω(ab) = ω(a) + ω(b) ≈ 2 log logN . The problem with this
heuristic is that ω(ab) = ω(a)+ω(b) iff a and b are coprimes. This motivates the following definition. Define
A∗(N) = {(a, b) : a, b ∈ N and gcd(a, b) = 1}. The following claim solves our problem:

Lemma 2.
|A∗(N)| = o(N2) =⇒ |A(N)| = o(N2).

Exercise 1. Prove Erdős’s Theorem using the two lemmas above.

Proof of Lemma 2. First note that

n ∈ A(N) =⇒ n = a · b =⇒ a

gcd(a, b)
· b

gcd(a, b)
=

n

gcd(a, b)2
.

Therefore, if we denote dn := gcd(a, b)2, then n
gcd(a,b)2

∈ A∗(N/dn) and so

|A(N)| ≤
∑
d≤N

∣∣∣∣A∗(Nd
)∣∣∣∣ .

Exercise 2. Carefully justify the last inequality.

Now, the fact that |A∗(N)| = o(N2) formally tells us that ∀ε > 0 , ∃Cε > 0 s.t. |A∗(M)| ≤ εM2 whenever
M > Cε. Fix an ε > 0 and the corresponding Cε > 0, and let N be sufficiently large. Picking up where we
left off: ∑

d≤N

∣∣∣∣A∗(Nd
)∣∣∣∣ =

∑
d≤ N

Cε

∣∣∣∣A∗(Nd
)∣∣∣∣+

∑
N
Cε

<d≤N

∣∣∣∣A∗(Nd
)∣∣∣∣ ≤ ∑

d≤ N
Cε

ε
N2

d2
+

∑
N
Cε

<d≤N

N2

d2

= εN2
∑
d≤ N

Cε

1

d2
+N2

∑
N
Cε

<d≤N

1

d2
� εN2 +N2

∑
N
Cε

<d≤N

1

(N/Cε)2

� εN2 + C2
εN =

(
ε+

C2
ε

N

)
N2.

Exercise 3. Why is the proof complete?

* * *
* *
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Let us now shift gears. Recall the following conjecture from the previous lecture:

Conjecture (Erdős-Szemerédi).

∀A ⊆ Z max(|A+A| , |A ·A|) = |A|2−o(1) .

Incidentally, in cases where the statement holds and |A+A| = |A|2−o(1), we say that “A is random with
respect to addition.” The interesting idea behind this piece of jargon is that the typical behaviour of “ran-
dom” sets with respect to arithmetical operations gives us a way of measuring randomness.

The strongest positive result addressing this conjecture was achieved by József Solymosi in 2009.

Theorem (Solymosi, 2009).

∀A,B ⊆ R |A ·B| · |A+B| · |B +B| � |A|2 |B|2

log(|A| |B|)
.

This result was later extended to C, though we shall prove it only for the case where A,B ⊆ R>0. We also
note that the log(|A| |B|) factor at the denomenator of the RHS is in fact log(|C|) where C := min(|A| , |B|).
Finally, note the following immediate corollary to Solymosi’s theorem.

Corollary.

∀A ⊆ R max(|A+A| , |A ·A|)� |A|
4
3
−o(1) .

Before we proceed to prove Solymosi’s theorem, we stop to define the following useful notation.

Definition. Let ⊕ be a binary operation. Then

rA⊕B(x) := |{(a, b) : a⊕ b = x, a ∈ A, b ∈ B}| .

To famliarize yourself with this notation, convince yourself that∑
x∈A⊕B

rA⊕B(x) = |A×B| = |A| · |B| .

Proof of Solymosi’s Theorem. We assume throughout that A,B ⊆ R>0. Solymosi’s first key insight was to
observe that ∑

x∈A·B
rA·B(x)2 =

∑
m∈B÷A

rB÷A(m)2. (1)

Exercise 4. Prove the equality above.

The LHS of this equality is called the “multiplicative energy” (introduced by Terence Tao?) of A and B.
One way to interpret that sum intuitively is

∣∣{(a, b); (a′, b′) ∈ (A×B)2 : ab = a′b′}
∣∣, though it is not clear

how to use this characterisation. For this proof we will trivially bound LHS from below.

Coming back to Solymosi’s insight, rB÷A on the RHS can be interpreted geometrically. We have

rB÷A = |{(a, b) ∈ A×B : b/a = m}| ,

so we are counting the number of (A × B)-lattice points on the line Lm of slope m through the origin,
y = mx. This geometrical insight will allow us to bound the RHS from above. Combining this with the
lower bound on the LHS will yield the desired result. Let us start with the trivial lower bound on the LHS.
From Cauchy-Schwarz we have( ∑

x∈A·B
rA·B(x)

)2

≤

( ∑
x∈A·B

rA·B(x)2

)( ∑
x∈A·B

12

)
⇐⇒ |A|2 |B|2 ≤ |A ·B|

∑
x∈A·B

rA·B(x)2.

Therefore, in light of equation (1), suffices it to show that∑
m∈B÷A

rB÷A(x)2 � |A+A| · |B +B| · log(|A| |B|).

This is exactly what we shall do in our next lecture. In preperation:

Exercise 5. |A+A| · |B +B| = |(A×B) + (A×B)| .
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