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Today we are going to complete the proof of Solymosi’s theorem. While the theorem is valid over C, we
shall only prove it over R>0. For ease of reference:

Theorem (Solymosi, 2009). For all A,B ⊆ R>0,

|A ·B| · |A + B| · |B + B| � |A|2 |B|2

log(|A| |B|)
.

Last time we defined the notation rA⊕B(x) and noted the first key insight in the proof:

∑
x∈A·B

rA·B(x)2 =
∑

m∈B÷A
rB÷A(m)2. (1)

We then established the following lower bound using Cauchy-Schwarz:

∑
x∈A·B

rA·B(x)2 ≥ |A|
2 |B|2

|A ·B|
. (2)

It therefore suffices to prove that∑
m∈B÷A

rB÷A(m)2 � |A + A| · |B + B| · log(|A|). (3)

The significance of the identity (1) is that it admits a geometric interpretation: rB÷A(m) enumerates the
number of (A×B)-lattice points on the line Lm through the origin with slope m. In the example below A,B
are sets of positive real numbers having 5 elements each. The lattice A×B is illustrated as well as the line
L2 going through the point (a1, b2). Since L2 only contains a single lattice point, we see that rB÷A(2) = 1.
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Proof of Solymosi’s Theorem Continued. Recall that we wish to prove the upper bound (3). For aesthetic
reasons, set

r(m) := rB÷A(m)

for the remainder of the proof.

One difficulty in analyzing the sum (3) is that r(m) varies drastically from one line to the next. To remedy
this, we employ a simple but effective trick: divide and conquer. We partition the sum into pieces in such
a way that within each piece, r(m) doesn’t vary too much:

∑
m∈B÷A

r(m)2 =
∑
j

∑
m∈B÷A

2j−1<r(m)≤2j

r(m)2 (4)

Suppose the inner sum on the RHS of (4) is maximized at j = J .

Exercise 1. Carefully prove that∑
m∈B÷A

r(m)2 � log(|A|)
∑

m∈B÷A
2J−1<r(m)≤2J

r(m)2 (5)

Let M :=
{
m ∈ B ÷A : 2J−1 < r(m) ≤ 2J

}
. To conclude the proof of Solymosi’s theorem, it suffices to

show that ∑
m∈M

r(m)2 � |A + A| · |B + B| .

Observe that for any m,m′ ∈ M we have r(m) ≤ 2r(m′); by symmetry of m and m′, we deduce that
r(m) � r(m′). Now, M is a finite set of positive numbers; enumerate its elements

M = {m1,m2, . . . ,mn},

where mi < mi+1 for all i. We have ∑
i≤n

r(m)2 �
∑
i≤n

r(mi) · r(mi+1). (6)

Recall that r(m) has a geometric interpretation: it is the number of lattice points on the line Lm. Abusing
notation, we take Lm to be the set of lattice points lying on the line, i.e.

Lm := {(x, y) ∈ A×B : y = mx}.

Solymosi’s second key insight concerns the geometry of the sumset Lmi + Lmi+1 .

Exercise 2. Show that:
(a) Any point in Lmi + Lmi+1 lies in between the lines Lmi and Lmi+1 . Conclude that if i 6= j then

(Lmi + Lmi+1) ∩ (Lmj + Lmj+1) = ∅.

(b) For all p ∈ Lm + Lm′ , we have rLm+Lm′
(p) = 1.

(c) Conclude that |Lm + Lm′ | = |Lm| · |Lm′ |.

Applying the above exercise to (6), we have (“t” denotes disjoint union)∑
i≤n
|Lmi |

2 �
∑
i≤n
|Lmi |

∣∣Lmi+1

∣∣ =
∑
i≤n

∣∣Lmi + Lmi+1

∣∣
=

∣∣∣∣∣∣
⊔
i≤n

(Lmi + Lmi+1)

∣∣∣∣∣∣ ≤ |A×B + A×B| = |A + A| · |B + B| .
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Exercise 3. Justify the inequality step (“≤”) in the calculation above. Can you come up with an example
of A and B where it’s a tight bound? What about where it’s a poor bound?

Exercise 4. Above, we were a bit sloppy with the ‘extra’ term Lmn+1 . Fix the proof to account for this.
[One way to do this is to define Lmn+1 to be {0} ×B. But there are other ways as well.]

* * *
* *

If you reflect back to our first lecture you’d realize that we were focusing on sets of integers; consider
Erdős-Szemerédi Conjecture for example. It turns out, however, that a more natural setting for the type of
questions we’ve been asking are arbitrary fields and abelian groups.

For instance, let (G,+) be an abelian group. Let A ⊆ G be finite. How big is |A + A|? We have the trivial
bounds |A| ≤ |A + A| ≤ 1

2 |A| (|A| + 1). When is the lower bound tight? In class we interactively came up
with the following:

Proposition. Given an abelian group (G,+) and a finite subset A ⊆ G, we have |A + A| = |A| iff A is a
coset of a subgroup of G.

Exercise 5. Prove the above proposition.

Exercise 6. Let (G,+) be an abelian group, and let A ⊆ G be finite. Prove that |A−A| = |A| iff A is a
coset of a subgroup of G.

Note that cosets of subgroups of Z are precisely arithmetic progressions. Thus the proposition above gives
some intuition for the Freiman-Rusza theorem. More generally, suppose that |A + A| ≤ K |A| for some
constant K (called the “doubling constant” of A). What can we say about A now? If K isn’t too big, then
A should hopefully “look like” a coset.

Until very recently, no one new how to think cohesively about additive combinatorics. Ben Green (one of
the pioneers in the field) commented on this in a 2009 paper. However, a current viewpoint on the field is
the following: Additive Combinatorics is the study of approximate algebraic structures. For example, one
can characterize cosets of subgroups by the condition that they satisfy |A + A| = |A|. What happens when
one weakens this to |A + A| ≤ K|A|? Then A becomes a coset of an approximate subgroup.

* * *
* *

In the final part of the lecture, we considered a lovely result due to Izabella  Laba (who, like Solymosi, is a
professor at UBC).

Theorem ( Laba, 2001). Let G be an abelian group. If A ⊆ G is a finite subset such that |A−A| < 3
2 |A|,

then A−A is a subgroup of G.

Exercise 7. Show (by example) that the doubling constant 3
2 in  Laba’s Theorem is tight.

Next, we outlined a proof of this result.

Exercise 8. Show that:

1. ∀x ∈ A−A , |A ∩ (A + x)| > 1
2 |A|. Conclude that (A + x) ∩ (A + y) 6= ∅ for any x, y ∈ A−A.

2. Show that A−A is closed under differences. Conclude that it is a subgroup of G.
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