Additive Combinatorics Lecture 3

Leo Goldmakher Scribe: Gal Gross

Jan. 24th, 2014

Today we are going to complete the proof of Solymosi's theorem. While the theorem is valid over \mathbb{C} , we shall only prove it over $\mathbb{R}_{>0}$. For ease of reference:

Theorem (Solymosi, 2009). For all $A, B \subseteq \mathbb{R}_{>0}$,

$$|A \cdot B| \cdot |A + B| \cdot |B + B| \gg \frac{|A|^2 |B|^2}{\log(|A| |B|)}$$

Last time we defined the notation $r_{A \oplus B}(x)$ and noted the first key insight in the proof:

$$\sum_{x \in A \cdot B} r_{A \cdot B}(x)^2 = \sum_{m \in B \div A} r_{B \div A}(m)^2.$$
(1)

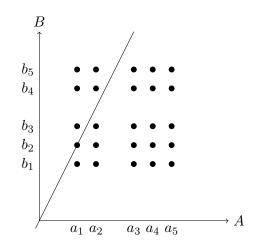
We then established the following lower bound using Cauchy-Schwarz:

$$\sum_{x \in A \cdot B} r_{A \cdot B}(x)^2 \ge \frac{|A|^2 |B|^2}{|A \cdot B|}.$$
(2)

It therefore suffices to prove that

$$\sum_{m \in B \div A} r_{B \div A}(m)^2 \ll |A + A| \cdot |B + B| \cdot \log(|A|).$$
(3)

The significance of the identity (1) is that it admits a geometric interpretation: $r_{B \div A}(m)$ enumerates the number of $(A \times B)$ -lattice points on the line \mathscr{L}_m through the origin with slope m. In the example below A, B are sets of positive real numbers having 5 elements each. The lattice $A \times B$ is illustrated as well as the line \mathscr{L}_2 going through the point (a_1, b_2) . Since \mathscr{L}_2 only contains a single lattice point, we see that $r_{B \div A}(2) = 1$.



Proof of Solymosi's Theorem Continued. Recall that we wish to prove the upper bound (3). For aesthetic reasons, set

$$r(m):=r_{B\div A}(m)$$

for the remainder of the proof.

One difficulty in analyzing the sum (3) is that r(m) varies drastically from one line to the next. To remedy this, we employ a simple but effective trick: divide and conquer. We partition the sum into pieces in such a way that within each piece, r(m) doesn't vary too much:

$$\sum_{m \in B \div A} r(m)^2 = \sum_j \sum_{\substack{m \in B \div A \\ 2^{j-1} < r(m) \le 2^j}} r(m)^2$$
(4)

Suppose the inner sum on the RHS of (4) is maximized at j = J.

Exercise 1. Carefully prove that

$$\sum_{m \in B \div A} r(m)^2 \ll \log(|A|) \sum_{\substack{m \in B \div A \\ 2^{J-1} < r(m) \le 2^J}} r(m)^2$$
(5)

Let $\mathcal{M} := \{m \in B \div A : 2^{J-1} < r(m) \le 2^J\}$. To conclude the proof of Solymosi's theorem, it suffices to show that

$$\sum_{m \in \mathcal{M}} r(m)^2 \ll |A + A| \cdot |B + B|.$$

Observe that for any $m, m' \in \mathcal{M}$ we have $r(m) \leq 2r(m')$; by symmetry of m and m', we deduce that $r(m) \approx r(m')$. Now, \mathcal{M} is a finite set of positive numbers; enumerate its elements

$$\mathcal{M} = \{m_1, m_2, \dots, m_n\},\$$

where $m_i < m_{i+1}$ for all *i*. We have

$$\sum_{i \le n} r(m)^2 \ll \sum_{i \le n} r(m_i) \cdot r(m_{i+1}).$$
 (6)

Recall that r(m) has a geometric interpretation: it is the number of lattice points on the line \mathscr{L}_m . Abusing notation, we take \mathscr{L}_m to be the set of lattice points lying on the line, i.e.

$$\mathscr{L}_m := \{ (x, y) \in A \times B : y = mx \}.$$

Solymosi's second key insight concerns the geometry of the sumset $\mathscr{L}_{m_i} + \mathscr{L}_{m_{i+1}}$.

Exercise 2. Show that:

- (a) Any point in $\mathscr{L}_{m_i} + \mathscr{L}_{m_{i+1}}$ lies in between the lines \mathscr{L}_{m_i} and $\mathscr{L}_{m_{i+1}}$. Conclude that if $i \neq j$ then $(\mathscr{L}_{m_i} + \mathscr{L}_{m_{i+1}}) \cap (\mathscr{L}_{m_j} + \mathscr{L}_{m_{j+1}}) = \emptyset$.
- (b) For all $p \in \mathscr{L}_m + \mathscr{L}_{m'}$, we have $r_{\mathscr{L}_m + \mathscr{L}_{m'}}(p) = 1$.
- (c) Conclude that $|\mathscr{L}_m + \mathscr{L}_{m'}| = |\mathscr{L}_m| \cdot |\mathscr{L}_{m'}|.$

Applying the above exercise to (6), we have (" \sqcup " denotes disjoint union)

$$\sum_{i \le n} |\mathscr{L}_{m_i}|^2 \ll \sum_{i \le n} |\mathscr{L}_{m_i}| \, |\mathscr{L}_{m_{i+1}}| = \sum_{i \le n} |\mathscr{L}_{m_i} + \mathscr{L}_{m_{i+1}}|$$
$$= \left| \bigsqcup_{i \le n} (\mathscr{L}_{m_i} + \mathscr{L}_{m_{i+1}}) \right| \le |A \times B + A \times B| = |A + A| \cdot |B + B|.$$

L	-	-	

Exercise 3. Justify the inequality step (" \leq ") in the calculation above. Can you come up with an example of A and B where it's a tight bound? What about where it's a poor bound?

Exercise 4. Above, we were a bit sloppy with the 'extra' term $\mathscr{L}_{m_{n+1}}$. Fix the proof to account for this. [One way to do this is to define $\mathscr{L}_{m_{n+1}}$ to be $\{0\} \times B$. But there are other ways as well.]

* * *

If you reflect back to our first lecture you'd realize that we were focusing on sets of integers; consider Erdős-Szemerédi Conjecture for example. It turns out, however, that a more natural setting for the type of questions we've been asking are arbitrary fields and abelian groups.

For instance, let (G, +) be an abelian group. Let $A \subseteq G$ be finite. How big is |A + A|? We have the trivial bounds $|A| \leq |A + A| \leq \frac{1}{2} |A| (|A| + 1)$. When is the lower bound tight? In class we interactively came up with the following:

Proposition. Given an abelian group (G, +) and a finite subset $A \subseteq G$, we have |A + A| = |A| iff A is a coset of a subgroup of G.

Exercise 5. Prove the above proposition.

Exercise 6. Let (G, +) be an abelian group, and let $A \subseteq G$ be finite. Prove that |A - A| = |A| iff A is a coset of a subgroup of G.

Note that cosets of subgroups of \mathbb{Z} are precisely arithmetic progressions. Thus the proposition above gives some intuition for the Freiman-Rusza theorem. More generally, suppose that $|A + A| \leq K |A|$ for some constant K (called the "doubling constant" of A). What can we say about A now? If K isn't too big, then A should hopefully "look like" a coset.

Until very recently, no one new how to think cohesively about additive combinatorics. Ben Green (one of the pioneers in the field) commented on this in a 2009 paper. However, a current viewpoint on the field is the following: Additive Combinatorics is the study of approximate algebraic structures. For example, one can characterize cosets of subgroups by the condition that they satisfy |A + A| = |A|. What happens when one weakens this to $|A + A| \leq K|A|$? Then A becomes a coset of an approximate subgroup.

* *

In the final part of the lecture, we considered a lovely result due to Izabella Łaba (who, like Solymosi, is a professor at UBC).

Theorem (Laba, 2001). Let G be an abelian group. If $A \subseteq G$ is a finite subset such that $|A - A| < \frac{3}{2} |A|$, then A - A is a subgroup of G.

Exercise 7. Show (by example) that the doubling constant $\frac{3}{2}$ in Laba's Theorem is tight.

Next, we outlined a proof of this result.

Exercise 8. Show that:

- 1. $\forall x \in A A$, $|A \cap (A + x)| > \frac{1}{2} |A|$. Conclude that $(A + x) \cap (A + y) \neq \emptyset$ for any $x, y \in A A$.
- 2. Show that A A is closed under differences. Conclude that it is a subgroup of G.