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Recall that |[n] + [n]| = |[n]− [n]|, where [n] := {1, 2, . . . , n}. Is it always the case that A + A = A − A?
We came up with the counterexample A = {1, 2, 4}, where |A + A| = 6 but |A−A| = 7. In this case
the difference set is larger than the sumset. What about in reverse? Does there exist A ⊂ Z for which
|A−A| < |A + A|? Some playing around led to no such examples, and one might be tempted to conjecture
that |A + A| ≤ |A − A| for all finite sets A ⊂ Z. We even came up with a heuristic argument for why this
might be the case: addition is commutative, while subtraction is not, so where A + A automatically has
many coincidences which A−A does not.

Unfortunately, this argument is not rigorous. In fact, one can make an equally convincing argument in
reverse: in A− A there are many ways to make 0, so there are automatically many coincidences in A− A.
This is exactly what happens for the set A = {0, 2, 3, 4, 7, 11, 12, 14} (due to John Conway): we have
|A + A| = 26 but |A−A| = 25.

Nonetheless, empirically, sets for which the sumset is larger than the difference set are rare. This led us to
the following questions (some of which may be open):

1. Find the smallest set A such that |A + A| > |A−A|.

2. Is it true that for “most” A ⊆ Z we have |A + A| ≤ |A−A|?

3. Are there infinitely many fundamentally different A ⊆ Z such that |A + A| > |A−A|?

4. Classify all A ⊆ Z such that |A + A| > |A−A|.

5. Is it true that for any A ⊆ Z we have
∣∣∣|A−A| − |A + A|

∣∣∣� 1? [Update: The answer is NO!]

* * *
* *

We went back to discussing the general case of Abelian groups. For the remainder of the lecture we take
(G,+) to be an abelian group and A,B,C,X, Y, Z to be finite subsets of G.

Recall that the doubling constant of A is defined to be |A + A| / |A|. Some people use the same name for
|A−A| / |A|. This is unfortunate, since (as we saw above) the relationship between these two quantities is
mysterious. Nonetheless, it turns out that there is a relationship between them:

Proposition 1. |A−A||A| ≤
(
|A+A|
|A|

)2
for all finite A ⊆ G.

We will deduce this from a more general relation:

|B − C|
|A|

≤ |A + B| |A + C|
|A|2

.

Written in this form, the inequality looks a lot less natural than the one in the Proposition. After a bit of
playing around, we realized there was a more symmetric way of writing the general inequality.
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Theorem 1 (Ruzsa’s triangle inequality). For all finite sets X,Y, Z ⊆ G we have

|X − Z|√
|X|
√
|Z|
≤ |X − Y |√

|X|
√
|Y |
· |Y − Z|√
|Y |
√
|Z|

.

Although this does look a bit reminiscent of a triangle inequality, the name of the theorem may strike you
as strange. We quickly realized that taking logarithms makes this a legitimate triangle inequality. More
precisely:

Definition (Ruzsa Distance). For any A,B ⊆ G we define

d(A,B) := log
|A−B|√
|A|
√
|B|

.

Exercise 1. Prove that d(·, ·) satisfies the following properties of a metric:

1. Non-negativity. d(A,B) ≥ 0.

2. Symmetry. d(A,B) = d(B,A).

3. Triangle Inequality. d(A,B) ≤ d(A,C) + d(C,B). [We did this collaboratively in class. In case
you missed it, here’s a hint: a good way to prove |X| ≤ |Y | is find an injection mapping X ↪→ Y .]

4. Why isn’t the Ruzsa distance a metric?

Just to illustrate the utility of the triangle inequality, we give a short proof of Proposition 1. We have

|A−A|
|A|

= ed(A,A) ≤ ed(A,−A)+d(−A,A) =
(
ed(A,−A)

)2
=

(
|A + A|
|A|

)2

.

Note that an immediate corollary of Proposition 1 is that if |A+A| ≤ K|A|, then |A−A| ≤ K2|A|. It turns
out that this can be generalized:

Theorem 2 (Plünnecke-Ruzsa). Let A ⊆ G with |A + A| ≤ K |A|. Then for all nonnegative integers m,n
we have

|mA− nA| ≤ Km+n |A|

where kA = A + A + · · ·+ A︸ ︷︷ ︸
k times

.

The original proof of this theorem was long and complicated, using deep results from graph theory. Several
years ago, Giorgis Petridis (then a PhD student of Gowers) discovered a simple and elegant combinatorial
proof which we give below.

Proof of Plünnecke-Ruzsa. Pick the nonempty set X ⊆ A which minimizes the quotient |A+X|
|X| ; say,

|A + X|
|X|

= K0.

In particular, note that K0 ≤ K. Petridis observed that this X enjoys the following remarkable property.

Lemma. For all B ⊆ G, we have |A + B + X| ≤ K0 |B + X|.

We will prove this lemma next class. For the moment, we deduce Plünnecke-Ruzsa from it. We have

|mA| ≤ |mA + X| = |A + (m− 1)A + X|
≤ K0 |(m− 1)A + X| ≤ · · · ≤ Km−1

0 |A + X|
≤ Km

0 |X| .
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Thus, if n = 0, we are done. Otherwise we use the same technique to deduce

|nA| ≤ Kn
0 |X| .

Now, we wish to find an upper bound on |mA − nA|. This suggests using the Ruzsa triangle inequality to
bound d(mA,nA) ≤ d(mA, ·) + d(·, nA). What can we put in place of ·? Examining our above bounds, we
see that we not only bounded |mA|, we also bounded |mA+X|. In other words, we know something about
the distance from mA to −X! Taking this hint, we consider Ruzsa’s triangle inequality:

d(mA,nA) ≤ d(mA,−X) + d(−X,nA).

Expanding and simplifying yields

|mA− nA| ≤ |mA + X| · |nA + X|
|X|

≤ Km
0 |X| ·Kn

0 |X|
|X|

= Km+n
0 |X| ≤ Km+n|A|.

This completes the proof of the Plünnecke-Ruzsa theorem, up to Petridis’ lemma. At the end of last class,
we collaboratively came up with a proof of the lemma. We will write down a tidied-up version of the proof
next lecture.
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