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Recall that the Freiman-Ruzsa theorem asserts that if A ⊆ Z has small doubling, then A is contained in a
low-dimensional gAP which isn’t much larger than A. In Lecture 8 we proved that it suffices to find some
positive integers m and n such that mA − nA contains a large proper gAP of small dimension (which we
shall call a “Ruzsa gAP”). Over the next two lectures we will solve this problem for A ⊆ ZN := Z/NZ. To
do so, first we follow an idea of Bogolyubov and use Fourier analysis to construct certain number theoretic
sets called Bohr sets inside 2A − 2A for any A ⊆ ZN . Next, we use Minkowski’s second theorem from the
geometry of numbers to show that any Bohr set contains a large proper gAP whose dimension is controlled
by the Bohr set. However, what we’re really interested in is finding Ruzsa gAPs in Z, not in ZN ! The final
step of the proof will be to develop the theory of Freiman homomorphisms (in particular Ruzsa’s ‘modelling
lemma’) to build a bridge between gAPs in Z and gAPs in ZN .

Freiman-Ruzsa Theorem

Ruzsa gAPs in Z

Ruzsa gAPs in ZN

Bogolyubov Lemma
Today’s lecture

Bohr-to-gAP Proposition

Ruzsa’s claim (Lecture 8)

Freiman homomorphisms

Lemma (N. Bogolyubov1). Let A ⊆ ZN with |A| = δN . Then 2A − 2A contains a Bohr set B(R, 14) of
dimension |R| ≤ δ−2.

As things stand, this is not an impressive result, because we haven’t yet defined what a Bohr set is! The
precise definition is somewhat technical, and in order to motivate it I will postpone stating it until after the
proof. For now, let me just say that given a set R ⊆ ZN , the associated Bohr set B(R,α) ⊆ ZN is the set of
all solutions to a certain system of inequalities defined in terms of α and the elements of R. Next lecture we
will show that B(R,α) contains a large proper gAP of dimension |R|; this motivates defining the dimension
of a Bohr set B(R,α) to be |R|.

Before proving Bogolyubov’s Lemma, we review our previous discussion of Fourier analysis. First is the
following simple but useful formula:

1

N

∑
n∈ZN

e
(an
N

)
=

{
1 if a ≡ 0 (mod N)

0 else.

1Nikolay Bogolyubov (1909–1992) was a Soviet mathematician and physicist who defended his PhD at age 19 and went on to
discover fundamental results in quantum field theory, statistical mechanics, several complex variables, and dynamical systems.
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Next, we recall two results from last lecture.

Theorem (Fourier Inversion). Given any function f : ZN → C, there exists a function f̂ : ZN → C such
that for all k ∈ ZN we have

f(n) =
1

N

∑
k∈ZN

f̂(k)e
(nk
N

)
.

In fact, we have the following formula for f̂ :

f̂(k) =
∑
a∈ZN

f(a)e
(
− ak

N

)
.

Theorem (Parseval’s formula). Given any f : ZN → C, we have∑
n∈ZN

|f(n)|2 =
1

N

∑
k∈ZN

|f̂(k)|2

Given A ⊆ ZN , define A(n) as its characteristic function

A(n) =

{
1 if n ∈ A,
0 otherwise.

This allows us to perform Fourier analysis. Consider the Fourier coefficients of this characteristic function:

Â(k) =
∑
n∈A

e
(
− kn

N

)
.

Note that e(α) is some point on the complex unit circle, so Â(k) is a sum of points on the unit circle.
Heuristically, the only way for Â(k) to be large is for e(−knN ) to point in the same direction for many values
of n ∈ A; in other words, the set A displays some bias, in that the dilated set {ka : a ∈ A} has many values
which are roughly the same (mod N). The worst such bias is evident in Â(0), in which the elements of the
dilated set are all the same: Â(0) = |A|. For other values of k, however, we typically do not have such easy
formulas. Instead of studying these individually, we use an idea we’ve seen before (Lecture 2) and compute
the average value of the Fourier coefficients.

1

N

∑
k∈ZN

Â(k) =
1

N

∑
k∈ZN

∑
n∈ZN

A(n)e
(−kn
N

)
=
∑
n∈A

1

N

∑
k∈ZN

e
(−kn
N

)

=
∑
n∈A

n≡0 (mod N)

1 = #{n ∈ A : n ≡ 0 (mod N)} = A(0).

Thus we can pick out whether or not 0 ∈ A by using the Fourier coefficients of A. More generally, one can
determine whether or not a ∈ A in terms of the Fourier coefficients:

A(a) = #{n ∈ A : n ≡ a (mod N)} =
1

N

∑
k∈ZN

Â(k)e
(ak
N

)
. (1)

What happens if we look at the second moment instead of the average?

1

N

∑
k∈ZN

Â(k)2 =
1

N

∑
k∈ZN

∑
n∈ZN

A(n)e
(−kn
N

)2

=
1

N

∑
k∈ZN

∑
m,n∈ZN

A(m)A(n)e
(−km

N

)
e
(−kn
N

)

=
∑

m,n∈A

1

N

∑
k∈ZN

e
(−k(m+ n)

N

)
= #{m,n ∈ A : m+ n ≡ 0 (mod N)}.
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As with (1), one may generalize this to

#{m,n ∈ A : m+ n ≡ a (mod N)} =
1

N

∑
k∈ZN

Â(k)2e
(ak
N

)
. (2)

Therefore, we conclude that a ∈ A+A iff the RHS in (2) (henceforth ♣(a)) is positive:

a ∈ A+A ⇐⇒ ♣(a) > 0 (3)

Exercise 1. Recall that the modulus | · | of a complex number is defined by |z|2 = z · z, where z denotes
the complex conjugate of z. Prove that

#{m,n ∈ A : m− n ≡ a (mod N)} =
1

N

∑
k (mod N)

∣∣∣Â(k)
∣∣∣2 e(ak

N

)
.

Exercise 2. Prove that

#{m,n, p, q ∈ A : (m+ n)− (p+ q) ≡ a (mod N)} =
1

N

∑
k (mod N)

∣∣∣Â(k)
∣∣∣4 e(ak

N

)
. (4)

Denoting the RHS of (4) by ♥(a), we conclude that

a ∈ 2A− 2A ⇐⇒ ♥(a) > 0.

Armed with this observation, we are ready to prove Bogolyubov’s Lemma.

Proof of Bogolyubov’s Lemma. One conclusion to draw from (4) is that ♥(a) is always a real number (in
fact, an integer). It follows that the imaginary part is zero, whence we have

♥(a) =
1

N

∑
k∈ZN

∣∣∣Â(k)
∣∣∣4 cos

(
ak

N

)
.

Recall that a ∈ 2A− 2A iff ♥(a) > 0. We now try to identify a large set of a for which ♥(a) > 0; the set of
such a will be our Bohr set. Our approach is to study which k ∈ ZN contribute the most to the sum ♥(a).

• k = 0. This contribution is easy to calculate: it is

1

N
|A|4 = δ4N3.

• Â(k) small. Observe that |Â(k)| is trivially bounded above by |A|. Fix some constant λ < 1 (to be

chosen optimally below), and say Â(k) is small if |Â(k)| < λ|A|. Let S denote the set of all k for
which Â(k) is small. What’s the total contribution to the sum ♥(a) above? We immediately see∣∣∣∣∣ 1

N

∑
k∈S

∣∣∣Â(k)
∣∣∣4 cos

(
ak

N

)∣∣∣∣∣ < 1

N

∑
k∈S

λ4|A|4 =
λ4|A|4|S|

N
≤ λ4|A|4

However, a clever use of Parseval leads to a much better bound:∣∣∣∣∣ 1

N

∑
k∈S

∣∣∣Â(k)
∣∣∣4 cos

(
ak

N

)∣∣∣∣∣ < λ2|A|2

N

∑
k∈S

∣∣∣Â(k)
∣∣∣2 ≤ λ2|A|2

N

∑
k∈ZN

∣∣∣Â(k)
∣∣∣2

= λ2|A|2
∑
n∈ZN

|A(n)|2 = λ2|A|3

Now observe that if we choose λ =
√
δ, then the total contribution from k = 0 and k ∈ S is

1

N

∣∣∣Â(0)
∣∣∣4 +

1

N

∑
k∈S

∣∣∣Â(k)
∣∣∣4 cos

(
ak

N

)
> 0.
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• Â(k) large. The remaining k’s are exactly those occupying the set

R := {k ∈ ZN : k 6= 0 and |Â(k)| ≥
√
δ |A|}.

Let us engage in some wishful thinking and suppose that there exists an a ∈ ZN such that cos
(
2πak
N

)
≥ 0

for all k ∈ R. Then by our above analysis, we deduce that ♥(a) > 0 and so a ∈ 2A − 2A. Geomet-
rically, cosx ≥ 0 precisely on the “right” half-circle [−π

2 ,
π
2 ], i.e. the inequality cos

(
2πak
N

)
≥ 0 holds

whenever −1
4 ≤

ak
N ≤

1
4 . Actually, it holds in other intervals as well, for example 3

4 ≤
ak
N ≤

5
4 . More

generally, the inequality cos
(
2πak
N

)
≥ 0 holds iff

∥∥ak
N

∥∥ ≤ 1
4 , where ‖·‖ denotes the distance to the

nearest integer (e.g. ‖1.2‖ = ‖1.8‖ = 0.2).

Putting all this together, we see that if
∥∥ak
N

∥∥ ≤ 1
4 for every k ∈ R, then a ∈ 2A− 2A. Thus, if we set

B
(
R,

1

4

)
:= {x ∈ ZN :

∥∥∥∥kxN
∥∥∥∥ ≤ 1

4
for all k ∈ R},

we have that B(R, 1/4) ⊆ 2A − 2A. This set B(R, 1/4) is an example of a Bohr set ; we will give a
general definition immediately following the conclusion of the proof. (We will also show that B(R, 1/4)
is decently large, which isn’t obvious a priori.)

To complete the proof it remains to evaluate the dimension of B(R, 14); recall that this is defined to

be |R|. Since |Â(k)| ≥
√
δ|A| for every k ∈ R, we have

1

N

∑
k∈R

∣∣∣Â(k)
∣∣∣2 ≥ 1

N

∑
k∈R

δ |A|2 =
1

N
|R| · δ |A|2 = |R|Nδ3.

On the other hand, by Parseval we have

1

N

∑
k∈R

∣∣∣Â(k)
∣∣∣2 ≤ 1

N

∑
k∈ZN

∣∣∣Â(k)
∣∣∣2 =

∑
n∈ZN

|A(n)|2 = |A| = δN.

We conclude that |R| ≤ δ−2, which completes the proof of Bogolyubov’s Lemma.

In the above proof, we needed to consider the set B(R, 1/4) ⊆ ZN of all nonzero solutions x ∈ ZN to the
system of inequalities ∥∥∥rx

N

∥∥∥ ≤ 1

4
for all r ∈ R.

More generally, given R ⊆ ZN and α ∈ [0, 1/2], let

B(R,α) := {x ∈ ZN :
∥∥∥rx
N

∥∥∥ ≤ α for all r ∈ R}.

This is a Bohr set. As discussed above, the dimension of the Bohr set B(R,α) is the size of the set R.

Having proved the existence of a Bohr set inside 2A−2A, our next goal is to find a large proper gAP of small
dimension inside that Bohr set. Before we do this, it would be nice to know that the Bohr set itself is large.
To build up our intuition, we first consider the situation of a 1-dimensional Bohr set B(k, α) := B({k}, α).

Consider the sequence of points {nkN (mod 1) : n ∈ ZN}. They are all distributed somewhere on the interval
[0, 1). Let us cover [0, 1) by the smaller intervals [mα, (m+1)α) for 0 ≤ m ≤M−1, where M is the smallest
natural number such that Mα ≥ 1. Thus, M ≈ 1

α .

[
0

)[
α

)[
2α

)
3α

. . .
[

(M − 1)α
|
1

)
Mα

Therefore, we are distributing N points (counted with multiplicity, as they are not necessarily distinct)
among ≈ 1

α boxes. By the pigeonhole principle, some interval I among the [mα, (m+ 1)α) contains � αN
points. Observe that for any x, y ∈ I we have ‖x− y‖ ≤ α; it follows that I − I ⊆ B(k, α). We therefore
have

|B(k, α)| ≥ |I − I| ≥ |I| � αN.

Thus, as long as α isn’t too small, B(k, α) occupies a decent proportion of the group ZN .
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Exercise 3. Suppose R ⊆ ZN , and set d = |R|. Prove that

B(R,α)� αdN.

It follows that if α isn’t too small and the dimension of the Bohr set isn’t too large, the Bohr set occupies
a decent proportion of ZN .

* * *
* *

It turns out that to prove the existence of large proper gAPs in a Bohr set, we need to know something about
the Geometry of Numbers. This field was pioneered by Minkowski2, and makes unexpected appearances in
numerous areas of mathematics. A precursor to the sorts of questions which come up in this area was first
studied by Gauss.

Gauss’ Circle Problem. How many Z× Z lattice points are there in a circle of radius r centered at the
origin?

Exercise 4. Let G(r) denote the number of lattice points in a circle of radius r centred at the origin. Give
a heuristic argument to justify the approximation G(r) ≈ πr2.

Gauss showed that G(r) = πr2 +O(r); it is a long-standing conjecture that the error term can be improved
to Oε(r

1/2+ε) for any ε > 0. The strongest result known towards this is due to M. Huxley, who in 2003 proved
the approximation G(r) = πr2 +O(r0.63). From the other side, G. H. Hardy and E. Landau independently
proved that G(r) 6= πr2 +O(r1/2), in the sense that

lim sup
r→∞

|G(r)− πr2|√
r

=∞.

2Hermann Minkowski (1864–1909) was a mathematician who applied geometry to solve numerous important problems in
mathematics and physics, notably introducing the idea of four-dimensional space-time into Einstein’s theory of special relativity.
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