
ADDITIVE COMBINATORICS: LECTURE 13

LEO GOLDMAKHER

Today we are going to develop the final tool required to prove the Freiman-Ruzsa theorem. First,
recall what we’re trying to prove:

Theorem 1 (Freiman-Ruzsa). Given a finite set A ⊂ Z such that |A + A| ≤ K|A|. Then there
exists a gAP Q ⊇ A such that |Q| �

K
|A| and dimQ�

K
1.

Proof Strategy. First, we embed A into some finite group ZN ; let B ⊆ ZN denote the image of
A. Applying our Bohr set machinery (Bogolyubov’s Lemma combined with the Bohr-to-gAP
proposition) produces a large, low-dimensional proper gAP Q ⊆ 2B − 2B. Now pull back Q to
a proper gAP inside 2A − 2A. Finally, Ruzsa’s Reduction Lemma (from Lecture 8) allows us to
construct out of this a small low-dimensional gAP containing A.

‘QED’
Let us consider this approach more carefully. The argument begins with an injective map

φ : A ↪→ ZN . Set B := φ(A), so that φ is a bijection between A and B. The Bohr set ma-
chinery yields a proper gAP Q ⊆ 2B − 2B of dimension ≤ 1

δ2
, where δ = |B|

N
is the density of B

inside ZN ; to guarantee that the dimension is small, we need δ to be fairly large. Equivalently:

We need an injection φ : A ↪→ ZN such that N not much larger than |A|. (1)

The next step of the argument is to pull back the gAP from 2B−2B to a gAP in 2A−2A. In other
words:

Given a bijection φ : A→ B, we need to construct ψ : 2B − 2B → 2A− 2A which
preserves proper gAPs.

(2)

Making ψ an injection guarantees that it preserves properness, but ensuring that ψ preserves gAPs
is more demanding. The most natural injective map which preserves gAPs is a group isomorphism,
but this is too rigid – there are no isomorphisms between Z and ZN , for example. Instead we will
use a weaker notion, that of a Freiman k-isomorphism. Before defining this, we recall from last
lecture the concept of a Freiman k-homomorphism:

Definition. Given abelian groupsG andH and subsetsA ⊆ G andB ⊆ H , a Freiman k-homomorphism
from A to B is a map φ : A→ B which satisfies the property

a1 + a2 + · · ·+ ak = a′1 + a′2 + · · ·+ a′k
⇓

φ(a1) + φ(a2) + · · ·+ φ(ak) = φ(a′1) + φ(a′2) + · · ·+ φ(a′k)

for any ai, a′i ∈ A.
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Last lecture we made several observations:
• any genuine homomorphism is a k-homomorphism for any k;
• a k-homomorphism is an `-homomorphism for any ` ≤ k;
• a translation is a k-homomorphism for every k; and
• 2-homomorphisms map APs to APs; injective 2-homomorphisms map proper APs to proper

APs.

Exercise 1. Show that an injective 2-homomorphism maps proper gAPs to proper gAPs of the
same size and dimension.

We can now define a Freiman k-isomorphism:

Definition. Given abelian groupsG andH and subsetsA ⊆ G andB ⊆ H , a Freiman k-isomorphism
from A to B is a bijective map φ : A→ B such that both φ and φ−1 are k-homomorphisms. If this
is the case, we write A 'k B.

Equivalently, φ : A→ B is a k-isomorphism if

a1 + a2 + · · ·+ ak = a′1 + a′2 + · · ·+ a′k

m
φ(a1) + φ(a2) + · · ·+ φ(ak) = φ(a′1) + φ(a′2) + · · ·+ φ(a′k)

Exercise 2. Show that there exist bijective k-homomorphisms which are not k-isomorphisms.

It’s clear that k-isomorphisms satisfy one of the requirements from (2) – they preserve proper
gAPs – but it’s not obvious how to extract a k-isomorphism ψ : 2B − 2B → 2A − 2A from an
`-isomorphism φ : A→ B. Some thought suggests the following.

Exercise 3. If A '8 B, then 2A− 2A '2 2B − 2B.

This completely settles our requirement (2), leaving us to focus on (1): how to k-isomorphically
embed an arbitrary set A ⊆ Z into ZN for some N which isn’t too large. For example, the
natural embedding of A = {0, 2, 4000} is into Z4001, which is huge compared to A and thus causes
problems when we apply our Bohr set machinery. A more potent example is the set {p ≤ n} of all
primes up to n; this can certainly be embedded into Zn, but the primes occupy an arbitrarily small
proportion of Zn as n → ∞, so we would not be able to get any bound on the dimension of the
gAP produced by the Bohr set machinery.

In the above two examples we saw that the most obvious embedding is not useful, because it
embeds the set into a group which is so large that the Bohr set machinery gives poor bounds on
the dimension of the gAP. Perhaps there’s a clever way to k-isomorphically embed these sets into
a smaller group? Unfortunately, it turns out that some sets cannot be k-isomorphically embedded
into any small groups.

Example 2. Let A = {1, 2, 4, . . . , 2n−1}. I claim that A isn’t 2-isomorphic to any subset of ZN
unless N is large. For, suppose A '2 B ⊆ ZN . Then

n(n+ 1)

2
= |A+ A| = |B +B| ≤ N.

In particular, if N ≤ 1
2
|A|2 then A doesn’t embed 2-isomorphically into ZN (and hence, doesn’t

embed k-isomorphically for any k ≥ 2). We could still use this to produce a gAP using our Bohr



set technology, but the dimension would be bounded by |A|
2

4
(as opposed to being bounded by a

constant, as in Freiman-Ruzsa).

This shows that there’s no hope of k-isomorphically embedding A directly into ZN . However, if
mA−mA isn’t too big, it turns out to be possible to embed a large chunk of A into ZN :

Lemma 3 (Ruzsa’s Modelling Lemma). Fix m ∈ N and a finite A ⊆ Z. Then for any prime
N > 2|mA−mA|, ∃A′ ⊆ A of size |A′| ≥ |A|

m
such that A′ embeds m-isomorphically into ZN .

We will prove this result below, but first we show how to use it to prove the Freiman-Ruzsa theorem.

Proof of Freiman-Ruzsa. Given A ⊆ Z of small doubling, say |A+A| ≤ K|A|. We wish to show
that A is contained in a low-dimensional gAP which is not much larger than A itself.

STEP 1: Embed a large chunk of A into ZN , for some N �
K
|A|; denote the image by B ⊆ ZN .

Plünnecke-Ruzsa implies |8A − 8A| ≤ K16|A|. Applying the Ruzsa Modelling
Lemma, we deduce that for any prime N > 2K16|A| we can 8-isomorphically
embed most of A into ZN . More precisely, fix a prime N satisfying

2K16|A| < N < 4K16|A|

(such a prime exists by Bertrand’s Postulate). Ruzsa’s Modelling Lemma implies
the existence of A′ ⊆ A and B ⊆ ZN such that A′ '8 B and |A′| � |A|.

STEP 2: Find a large, low-dimensional proper gAP inside 2B − 2B.

It follows from Step 1 that

|B| = |A′| � |A| �
K
N,

so that |B| = δN with δ �
K

1. Bogolyubov’s Lemma (Lecture 10) produces a
Bohr set B(R, 1/4) ⊆ 2B − 2B such that |R| ≤ 1

δ2
�

K
1. The Bohr-to-gAP

proposition (Lecture 11) implies the existence of a proper gAP inside this Bohr set,
of dimension�

K
1 and size�

K
N .

STEP 3: Pull back the above to a large, low-dimensional proper gAP inside 2A− 2A.

Since A′ '8 B, we have 2A′ − 2A′ '2 2B − 2B. Now 2-isomorphisms preserve
proper gAPs, whence 2A′−2A′ contains a proper gAP of dimension�

K
1 and size

�
K
N . Observe that 2A−2A ⊇ 2A′−2A′, and recall from Step 1 that N �

K
|A|.

It follows that 2A−2A contains a proper gAP of dimension�
K
1 and size�

K
|A|.

STEP 4: Produce a small, low-dimensional gAP containing A.

By Ruzsa’s Reduction lemma (Lecture 8), since we were able to find a proper gAP
of dimension�

K
1 and size�

K
|A| inside 2A− 2A, there must exist a gAP con-

taining A of size�
K
|A| and dimension�

K
1.

This concludes the proof. �



All that remains for us to do is to prove the Ruzsa Modelling Lemma. The strategy of the proof
is as follows. First, there is an obvious m-isomomorphism of A into Zp for huge primes (reduction
mod p); we will abuse notation and refer to the image ofA inside Zp asA as well. It now suffices to
find anm-isomorphism from a large piece ofA into a small finite field ZN . A first attempt at this is
to find the most popular interval I ⊆ Zp of length p/m, and reduce all the elements of I∩Amodulo
N . This gives an m-homomorphism from A to ZN , but it doesn’t give an m-isomorphism. Ruzsa’s
ingenious idea is to tweak the above construction to produce a huge family of m-homomorphisms
from large subsets of A to ZN . He then employs a counting argument to show that some of these
homomorphisms must be m-isomorphisms.

Proof of Ruzsa Modelling Lemma. Recall that we are given a finite set A ⊆ Z, a positive integer
m, and a prime N > 2|mA −mA|. We wish to find a large chunk of A which m-isomorphically
embeds into ZN . We begin by considering the most natural candidate for an m-homomorphic
embedding of a large chunk of A. This attempt won’t work, unfortunately, but it will serve as a
foundation on which to build an isomorphism.

STEP 1: m-isomorphically embed A into a finite (but potentially large) group Zp.
Consider the map

φ : A→ Zp
a 7→ a (mod p)

This is a genuine group homomorphism, and hence an m-homomorphism. So long
as p is large enough, it is also injective, thus giving an m-homomorphic embedding
of A into Zp. Moreover, if p is really huge, φ is an m-isomorphism. To see this,
define the diameter of A to be diam A := (maxA−minA), and pick any prime

p > m · diam A.

It is clear that φ is a bijective m-homomorphism from A onto φ(A); to see that
it’s an m-isomorphism, it suffices to verify that φ−1 is an m-homomorphism from
φ(A) onto A. To this end, suppose

φ(a1) + φ(a2) + · · ·+ φ(am) = φ(a′1) + φ(a′2) + · · ·+ φ(a′m).

This means

a1 + a2 + · · ·+ am ≡ a′1 + a′2 + · · ·+ a′m (mod p),

or in other words

(a1 − a′1) + · · ·+ (am − a′m) ≡ 0 (mod p). (3)

Now each difference on the left hand side is smaller than diam A, whence∣∣∣(a1 − a′1) + · · ·+ (am − a′m)
∣∣∣ ≤ m · diam A < p.

Combining this with (3) shows that

(a1 − a′1) + · · ·+ (am − a′m) = 0,

whence φ−1 is anm-homomorphism from φ(A) ontoA. Thus, φ is anm-isomorphism.



STEP 2: Construct an m-homomorphism from a large subset of Zp to ZN .
Since we can pick an arbitrarily large value of p in Step 1, we may assume that
p > N . The most natural map from Zp to ZN is the projection π : Zp → ZN ,
where π(x) := x (mod N ). An immediate problem is that π isn’t well-defined!

Exercise 4. Show (by example) that the projection π : Z7 → Z3 as described above
is not well-defined. [Hint: the elements of Z7 aren’t integers!]

Fortunately, there’s a cheap fix: project via the integers. First, given x ∈ Zp there
exists a unique xp ∈ {0, 1, 2, . . . , p− 1} such that x ≡ xp (mod p). Now define the
projection π by

π : Zp → ZN
x 7→ xp (mod N )

We now have a well-defined projection map, but it doesn’t do what we want:

Exercise 5. Show (by example) that π might not be an m-homomorphism. [Hint:
find an example in which it’s not a 2-homomorphism.]

This dashes our immediate hopes of finding an m-homomorphism from Zp to ZN .
Still, we can use π to construct an m-homomorphism from a decent-sized chunk of
Zp to ZN . Pick any interval I ⊆ {0, 1, . . . , p − 1} of length bp/mc; we may view
I as a subset of Zp.

Exercise 6. Prove that π is an m-homomorphism from I to ZN .

STEP 3: Construct an m-homomorphism from a large subset A′ ⊆ A to ZN .
Partition {0, 1, . . . , p− 1} into m intervals of length bp/mc (one of the intervals is
allowed to be ‘incomplete’, i.e. shorter). Let I be the interval among these which
is most popular with respect to φ(A), i.e. such that |I ∩φ(A)| is maximal. Now set

A′ := φ−1
(
I ∩ φ(A)

)
= {a ∈ A : φ(a) ∈ I}.

Applying the pigeonhole principle and recalling that φ is a bijection, we see that

|A′| = |I ∩ φ(A)| ≥ |φ(A)|
m

=
|A|
m
.

Since the composition of two m-homomorphisms is an m-homomorphism, we see
that

π ◦ φ : A′ → ZN is an m-homomorphism.
However, this isn’t an m-isomorphism; π might not even be injective! Our goal is
now to tweak the above construction to obtain a map which is an m-isomorphism
from a large subset of A into ZN .

STEP 4: Construct a large family of m-homomorphisms from large subsets of A to ZN .
For any λ ∈ Z×p , consider the map

φλ : A→ Zp
a 7→ λa (mod p)



Exercise 7. Prove that for each λ ∈ Z×p , there exists A′λ ⊆ A with |A′λ| ≥
|A|
m

such
that π ◦ φλ is an m-homomorphism from A′λ to ZN .

We thus have a large family of m-homomorphisms from large subsets of A to ZN .
I claim that one of these is an m-isomorphic embedding of A into ZN , so long as
N is large enough.

STEP 5: Count the number of non-isomorphisms.
Let’s call λ ∈ Z×p good if π ◦ φλ is an m-isomorphism from A′λ to ZN ; otherwise,
if it is merely an m-homomorphism, we say λ is bad. I claim there are at most
p

N
|mA−mA| bad λ’s; it follows that so long as N > 2|mA−mA|, there exists a

good λ, and the theorem is proved!

Our plan of attack is to show that any bad λ must satisfy a congruence modulo p;
then we will trivially count the number solutions to this congruence, thus giving a
bound on the number of bad λ’s. If λ is bad, there must exist ai, a′i ∈ A′λ such that

a1 + a2 + · · ·+ am 6= a′1 + a′2 + · · ·+ a′m

but
π ◦ φλ(a1) + · · ·+ π ◦ φλ(am) = π ◦ φλ(a′1) + · · ·+ π ◦ φλ(a′m). (4)

Set bi := φλ(ai) and b′i := φλ(a
′
i), with the understanding that bi, b′i ∈ {0, 1, 2, . . . , p− 1}.

Then (4) can be rewritten

b1 + · · ·+ bm ≡ b′1 + · · ·+ b′m (mod N ).

Since φλ is an isomorphism and λ is bad, we know that

b1 + · · ·+ bm 6= b′1 + · · ·+ b′m.

Without loss of generality, we may assume that the left hand side is larger than the
right; it follows from the above two displays that

(b1 + · · ·+ bm)− (b′1 + · · ·+ b′m) = `N (5)

for some integer ` ≥ 1.

Exercise 8. Prove that ` ≤ p
N

. [Hint: where do the bi’s live?]

It follows from (5) that

(b1 + · · ·+ bm)− (b′1 + · · ·+ b′m) ≡ `N (mod p)

whence (by the definition of bi and b′i) we deduce

λ−1 ≡ `−1N−1
(
(a1 + · · ·+ am)− (a′1 + · · ·+ a′m)

)
(mod p).

How many possible values can the right hand side take? From above, there are at
most p/N choices of `. The quantity (a1 + · · · + am) − (a′1 + · · · + a′m) takes at
most |mA−mA| distinct values modulo p. Thus, there are at most p

N
|mA−mA|

bad λ’s, as claimed at the start of this step; the theorem follows. �
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