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Notation:

• f(x) = O
(
g(x)

)
means that g(x) > 0 and

∣∣∣ f(x)g(x)

∣∣∣ is bounded for all reasonable values of x.

• f(x)� g(x) means precisely the same thing as f(x) = O
(
g(x)

)
.

• f(x)� g(x) means g(x)� f(x).

• f(x) = o
(
g(x)

)
means f(x)

g(x) → 0 as x→∞.

• f(x) � g(x) means f(x)� g(x) and g(x)� f(x).

• f(x) ∼ g(x) means f(x)
g(x) → 1 as x→∞.

• f(x) = g(x) +O
(
h(x)

)
means f(x)− g(x) = O

(
h(x)

)
.



Problem Set 1

1.1 In this exercise, you will explore the connection between ∼ and o(·).

(a) Prove that f(x) ∼ g(x) if and only if f(x) =
(
1 + o(1)

)
g(x).

(b) Prove that for all nice functions f(x) and g(x), f(x) ∼ g(x) if and only if log f(x) = log g(x) + o(1). Give
an appropriate interpretation of ‘nice’.

1.2 In each of the following, determine which of the following relations hold (possibly more than one):

f(x) ∼ g(x), f(x)� g(x), f(x)� g(x), f(x) � g(x), f(x) = o
(
g(x)

)
, g(x) = o

(
f(x)

)
.

Justify your responses.

(a) f(x) = 5x3 − 1000x+ 2 and g(x) = x3 − 0.01

(b) f(x) = 1000x and g(x) = x3

(c) f(x) = x1000 and g(x) = 2x

(d) f(x) = log x and g(x) = x0.01

(e) f(x) = xlog x and g(x) = (log x)x

(f) f(x) = (log x)log x and g(x) = xlog log x.

1.3 The purpose of this exercise is to introduce a simple but powerful technique called partial summation.

(a) Given any (Riemann) integrable function f , any sequence of complex numbers an, and any x ≥ 1, prove
that ∫ x

1

f ′(t)

(∑
n≤t

an

)
dt =

∑
n≤x

an

(
f(x)− f(n)

)
.

[Hint: Build up your intuition by proving the simple case x = 2. Then try x = 3. Then extend to all real
x ≥ 1.]

(b) Partial summation is the formula ∑
n≤x

anf(n) =

∫ x

1−
f(t) d

(∑
n≤t

an

)
, (*)

where 1− is shorthand for 1− ε with ε→ 0+, and the integral should be evaluated by integration by parts:∫ b

a

u dv = uv

∣∣∣∣b
a

−
∫ b

a

v du.

Prove (*).

[Comment: Partial summation has a nice heuristic interpretation – not helpful for solving this problem, but

a good mnemonic for remembering the formula (*). We start with t slightly below 1. As t increases,
∑
n≤t

an

doesn’t change until t crosses the value 1; at that moment,
∑
n≤t

an changes by a1, and the contribution to the
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integral is a1f(1). Next, as t increases from 1 to 2,
∑
n≤t

an sees no change; as soon as t crosses 2, the sum

changes by a2, and the contribution to the integral is a2f(2). Continuing the process suggests (*).]

1.4 Let [x] denote the largest integer less than or equal to x, i.e.

[x] := sup
{
n ∈ Z : n ≤ x

}
.

This is typically called the floor or integer part of x. The fractional part of x is defined {x} := x− [x].

(a) Prove that for any positive integer N ,

logN ! = N logN −N +
1

2
logN + 1 +

∫ N

1

(
{t} − 1

2

)dt
t
.

[Hint: Show that logN ! =

∫ N

1−
log t d[t] and integrate by parts.]

(b) Prove that ∫ N

1

(
{t} − 1

2

)dt
t

= O(1).

(c) Prove that N ! �
√
N
(

N
e

)N
.

1.5 Euler discovered the following identity, valid for any nonzero x (measured in radians):

sinx

x
=

∞∏
n=1

(
1− x2

n2π2

)
. (†)

(Recall that
∏
an denotes the product of all the an’s.) Euler used this to prove that

∞∑
n=1

1

n2
=
π2

6
.

In this exercise, you will derive a different consequence: Stirling’s formula.

(a) Using Euler’s identity (†) or otherwise, prove that

(2N)!!

(2N − 1)!!
∼
√
πN.

Here (2N)!! denotes the product of all positive even numbers ≤ 2N , and (2N − 1)!! denotes the product of all
positive odd number ≤ 2N − 1.

(b) Prove that
(2N)!! = 2NN !

and

(2N − 1)!! =
(2N)!

2NN !

(c) Prove Stirling’s formula: N ! ∼
√

2πN
(N
e

)N
. [Hint: First prove that there exists a constant C such that

N ! ∼ C
√
N
(

N
e

)N
. Now use parts (a) and (b) to show that C must equal

√
2π.]
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1.6 Having warmed up with Stirling’s formula, we now apply partial summation to study primes.

(a) Recall from lecture the Prime Number Theorem, which asserts that

π(x) ∼
∫ x

2

dt

log t

(where π(x) denotes the number of primes ≤ x). Use this to prove that

π(x) ∼ x

log x
.

[Comment: While this formula is more explicit than the previous one, and is occasionally easier to use, it is
a much worse approximation to π(x).]

(b) One precise version of the Prime Number Theorem states that

π(x) =
x

log x
+O

(
x

(log x)10

)
.

Use this to prove that ∑
p≤x

1

p
= log log x+O(1),

a fact we used in lecture. [Hint: Use partial summation to show that
∑
p≤x

f(p) =

∫ x

2−
f(t) dπ(t). Now integrate

by parts and simplify.]

1.7 Suppose A ⊆ Z is finite. Prove that |A + A| ≥ 2|A| − 1, and that equality holds if and only if A is an
arithmetic progression.

1.8 Given a group G, suppose H is a finite subset of G which is closed under the binary operation of G. (As
usual, we will denote this operation as a product.) The goal of this exercise is to prove that H must be a
subgroup of G.

(a) Carefully explain why associativity holds in H.

(b) Prove that the identity e ∈ H. [Hint: Let n = |H|, the order of H. For any a ∈ H which is not the identity,
consider the set S = {a, a2, a3, . . . , an+1}. Why must S be a subset of H? Why must two elements of S be
equal to each other? Deduce that e ∈ S, and therefore, e ∈ H.]

(c) Prove that for all a ∈ H, we have a−1 ∈ H (where a−1 is the inverse of a in G).

1.9 Exercise 1 from Lecture 1

1.10 Exercise 2 from Lecture 1
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