3 T		
Name:		

University of Toronto Department of Mathematics

MAT1302 / APM 461: ADDITIVE COMBINATORICS

Problem Set 1 – due Friday, February 14

INSTRUCTIONS:

Please turn the assignment in at the *start* of the lecture on the due date. Please print and attach this page as the first page of your submitted problem set.

PROBLEM	MARK
1.1	
1.2	
1.3	
1.4	
1.5	
1.6	
1.7	
1.8	
1.9	
1.10	
Total	

NOTATION:

- f(x) = O(g(x)) means that g(x) > 0 and $\left| \frac{f(x)}{g(x)} \right|$ is bounded for all reasonable values of x.
- $f(x) \ll g(x)$ means precisely the same thing as f(x) = O(g(x)).
- $f(x) \gg g(x)$ means $g(x) \ll f(x)$.
- f(x) = o(g(x)) means $\frac{f(x)}{g(x)} \to 0$ as $x \to \infty$.
- $f(x) \approx g(x)$ means $f(x) \ll g(x)$ and $g(x) \ll f(x)$.
- $f(x) \sim g(x)$ means $\frac{f(x)}{g(x)} \to 1$ as $x \to \infty$.
- f(x) = g(x) + O(h(x)) means f(x) g(x) = O(h(x)).

Problem Set 1

- **1.1** In this exercise, you will explore the connection between \sim and $o(\cdot)$.
- (a) Prove that $f(x) \sim g(x)$ if and only if f(x) = (1 + o(1))g(x).
- (b) Prove that for all nice functions f(x) and g(x), $f(x) \sim g(x)$ if and only if $\log f(x) = \log g(x) + o(1)$. Give an appropriate interpretation of 'nice'.
- 1.2 In each of the following, determine which of the following relations hold (possibly more than one):

$$f(x) \sim g(x), \quad f(x) \ll g(x), \quad f(x) \gg g(x), \quad f(x) \approx g(x), \quad f(x) = o(g(x)), \quad g(x) = o(f(x)).$$

Justify your responses.

(a)
$$f(x) = 5x^3 - 1000x + 2$$
 and $g(x) = x^3 - 0.01$

(b)
$$f(x) = 1000x$$
 and $g(x) = x^3$

(c)
$$f(x) = x^{1000}$$
 and $g(x) = 2^x$

(d)
$$f(x) = \log x$$
 and $g(x) = x^{0.01}$

(e)
$$f(x) = x^{\log x}$$
 and $g(x) = (\log x)^x$

(f)
$$f(x) = (\log x)^{\log x}$$
 and $g(x) = x^{\log \log x}$.

- 1.3 The purpose of this exercise is to introduce a simple but powerful technique called partial summation.
- (a) Given any (Riemann) integrable function f, any sequence of complex numbers a_n , and any $x \ge 1$, prove that

$$\int_{1}^{x} f'(t) \left(\sum_{n \le t} a_n \right) dt = \sum_{n \le x} a_n \left(f(x) - f(n) \right).$$

[Hint: Build up your intuition by proving the simple case x = 2. Then try x = 3. Then extend to all real $x \ge 1$.]

(b) Partial summation is the formula

$$\sum_{n \le x} a_n f(n) = \int_{1^-}^x f(t) \, d\left(\sum_{n \le t} a_n\right),\tag{*}$$

where 1⁻ is shorthand for $1 - \epsilon$ with $\epsilon \to 0^+$, and the integral should be evaluated by integration by parts:

$$\int_{a}^{b} u \, dv = uv \bigg|_{a}^{b} - \int_{a}^{b} v \, du.$$

Prove (*).

[Comment: Partial summation has a nice heuristic interpretation – not helpful for solving this problem, but a good mnemonic for remembering the formula (*). We start with t slightly below 1. As t increases, $\sum_{n \le t} a_n$

doesn't change until t crosses the value 1; at that moment, $\sum_{n \le t} a_n$ changes by a_1 , and the contribution to the

integral is $a_1f(1)$. Next, as t increases from 1 to 2, $\sum_{n \le t} a_n$ sees no change; as soon as t crosses 2, the sum changes by a_2 , and the contribution to the integral is $a_2f(2)$. Continuing the process suggests (*).]

1.4 Let [x] denote the largest integer less than or equal to x, i.e.

$$[x] := \sup \Big\{ n \in \mathbb{Z} : n \le x \Big\}.$$

This is typically called the floor or integer part of x. The fractional part of x is defined $\{x\} := x - [x]$.

(a) Prove that for any positive integer N,

$$\log N! = N \log N - N + \frac{1}{2} \log N + 1 + \int_{1}^{N} \left(\{t\} - \frac{1}{2} \right) \frac{dt}{t}.$$

[Hint: Show that $\log N! = \int_{1^{-}}^{N} \log t \, d[t]$ and integrate by parts.]

(b) Prove that

$$\int_{1}^{N} \left(\left\{ t \right\} - \frac{1}{2} \right) \frac{dt}{t} = O(1).$$

- (c) Prove that $N! \simeq \sqrt{N} \left(\frac{N}{e}\right)^N$.
- 1.5 Euler discovered the following identity, valid for any nonzero x (measured in radians):

$$\frac{\sin x}{x} = \prod_{n=1}^{\infty} \left(1 - \frac{x^2}{n^2 \pi^2} \right). \tag{\dagger}$$

(Recall that $\prod a_n$ denotes the product of all the a_n 's.) Euler used this to prove that

$$\sum_{n=1}^{\infty} \frac{1}{n^2} = \frac{\pi^2}{6}.$$

In this exercise, you will derive a different consequence: Stirling's formula.

(a) Using Euler's identity (†) or otherwise, prove that

$$\frac{(2N)!!}{(2N-1)!!} \sim \sqrt{\pi N}.$$

Here (2N)!! denotes the product of all positive even numbers $\leq 2N$, and (2N-1)!! denotes the product of all positive odd number $\leq 2N-1$.

(b) Prove that

$$(2N)!! = 2^N N!$$

and

$$(2N-1)!! = \frac{(2N)!}{2^N N!}$$

(c) Prove Stirling's formula: $N! \sim \sqrt{2\pi N} \left(\frac{N}{e}\right)^N$. [Hint: First prove that there exists a constant C such that $N! \sim C\sqrt{N} \left(\frac{N}{e}\right)^N$. Now use parts (a) and (b) to show that C must equal $\sqrt{2\pi}$.]

- 1.6 Having warmed up with Stirling's formula, we now apply partial summation to study primes.
- (a) Recall from lecture the Prime Number Theorem, which asserts that

$$\pi(x) \sim \int_2^x \frac{dt}{\log t}$$

(where $\pi(x)$ denotes the number of primes $\leq x$). Use this to prove that

$$\pi(x) \sim \frac{x}{\log x}.$$

[Comment: While this formula is more explicit than the previous one, and is occasionally easier to use, it is a much worse approximation to $\pi(x)$.]

(b) One precise version of the Prime Number Theorem states that

$$\pi(x) = \frac{x}{\log x} + O\left(\frac{x}{(\log x)^{10}}\right).$$

Use this to prove that

$$\sum_{p \le x} \frac{1}{p} = \log \log x + O(1),$$

a fact we used in lecture. [Hint: Use partial summation to show that $\sum_{p \leq x} f(p) = \int_{2^-}^x f(t) d\pi(t)$. Now integrate by parts and simplify.]

- **1.7** Suppose $A \subseteq \mathbb{Z}$ is finite. Prove that $|A + A| \ge 2|A| 1$, and that equality holds if and only if A is an arithmetic progression.
- **1.8** Given a group G, suppose H is a finite subset of G which is closed under the binary operation of G. (As usual, we will denote this operation as a product.) The goal of this exercise is to prove that H must be a subgroup of G.
- (a) Carefully explain why associativity holds in H.
- (b) Prove that the identity $e \in H$. [Hint: Let n = |H|, the order of H. For any $a \in H$ which is not the identity, consider the set $S = \{a, a^2, a^3, \dots, a^{n+1}\}$. Why must S be a subset of H? Why must two elements of S be equal to each other? Deduce that $e \in S$, and therefore, $e \in H$.]
- (c) Prove that for all $a \in H$, we have $a^{-1} \in H$ (where a^{-1} is the inverse of a in G).
- 1.9 Exercise 1 from Lecture 1
- 1.10 Exercise 2 from Lecture 1