UNIVERSITY OF TORONTO SCARBOROUGH

MATB43 : Introduction to Analysis FINAL EXAMINATION April 25, 2013

Duration – 3 hours Aids: none

NAME (PRINT):	KEY		
	Last/Surname	First/Given Name (and nickname)	
STUDENT NO:			

TOTAL:	 	

Please read the following statement and sign below:

I understand that any breach of academic integrity is a violation of The Code of Behaviour on Academic Matters. By signing below, I pledge to abide by the Code.

SIGNATURE:_____

MATB43

$$f(x) = \frac{x}{\frac{1}{2} - |x|}.$$

(a) (6 points) Prove that f is a bijection.

Injectivity: Suppose f(x) = f(y). We wish to show that x = y. We consider two cases:

Case (i) $x \ge 0$. Then $f(x) \ge 0$, whence $f(y) \ge 0$, whence $y \ge 0$. Since f(x) = f(y), we have $\frac{x}{\frac{1}{2} - x} = \frac{y}{\frac{1}{2} - y}.$

Simplifying this yields x = y.

<u>Case (ii)</u> x < 0. Then f(x) < 0, whence f(y) < 0, whence y < 0. Since f(x) = f(y), we have x = y

$$\frac{1}{\frac{1}{2} + x} = \frac{y}{\frac{1}{2} + y}$$
Simplifying this yields $x = y$.

Surjectivity: It is easily verified that for any $\alpha \in \mathbb{R}$, we have

$$f\left(\frac{\alpha}{2(1+|\alpha|)}\right) = \alpha. \tag{\dagger}$$

(b) (6 points) Given $x, y \in (-\frac{1}{2}, \frac{1}{2})$, define d(x, y) := |f(x) - f(y)|. Prove that *d* is a metric on $(-\frac{1}{2}, \frac{1}{2})$.

We must verify that the three properties of a metric are satisfied. First, we have d(x, x) = 0. Moreover, if d(x, y) = 0, then f(x) = f(y); by injectivity, x = y. Thus, we've proved that d(x, y) = 0 iff x = y.

Next,
$$d(x, y) = |f(x) - f(y)| = |f(y) - f(x)| = d(y, x).$$

Finally, for any x, y, z we have

 $d(x,y) + d(y,z) = |f(x) - f(y)| + |f(y) - f(z)| \ge |f(x) - f(z)| = d(x,z),$ by triangle inequality for absolute value.

(c) (6 points) Give an explicit description of $\mathcal{N}_{50}(\frac{1}{4})$, i.e. the neighbourhood of radius 50 around the point 1/4. (By "explicit description" I mean tell me all the elements of this neighbourhood.)

By definition,

$$\mathcal{N}_{50}\left(\frac{1}{4}\right) = \left\{ x \in \left(-\frac{1}{2}, \frac{1}{2}\right) : d\left(x, \frac{1}{4}\right) < 50 \right\}.$$

Now, $d(x, \frac{1}{4}) = |f(x) - f(1/4)| = |f(x) - 1|$, so $x \in \mathcal{N}_{50}\left(\frac{1}{4}\right)$ if and only if
 $-49 < f(x) < 51.$ (‡)

f is easily seen to be increasing on $\left(-\frac{1}{2},\frac{1}{2}\right)$, so (‡) is equivalent to

$$f^{-1}(-49) < x < f^{-1}(51)$$

By (†) in part (a), we see that

$$f^{-1}(\alpha) = \frac{\alpha}{2(1+|\alpha|)}.$$

It follows that

$$\mathcal{N}_{50}\left(\frac{1}{4}\right) = \left(-\frac{49}{100}, \frac{51}{104}\right).$$

continued on page 3

(2) Consider the metric space \mathbb{R}^2 under the British Rail metric, i.e.

$$d(x,y) := \begin{cases} 0 & \text{if } x = y \\ |x| + |y| & \text{if } x \neq y, \end{cases}$$

where |x| denotes the usual absolute value in \mathbb{R}^2 (i.e. the distance from the origin). Let

 $S := \{ (a,b) \in \mathbb{R}^2 : (a-2)^2 + (b-2)^2 < 1 \}.$

(a) (6 points) Is *S* open in the metric space (\mathbb{R}^2, d) ? Prove it or carefully explain why not.

Yes, *S* is open. To see this, we first prove the following:

Lemma. Given $p \in \mathbb{R}^2$. Then $\mathcal{N}_{\frac{1}{2}|p|}(p) = \{p\}$.

Proof. Since $\frac{1}{2}|p| \ge 0$ for all $p \in \mathbb{R}^2$, and d(p,p) = 0, we see that $p \in \mathcal{N}_{\frac{1}{2}|p|}(p)$ for all $p \in \mathbb{R}^2$. It therefore suffices to prove that this neighbourhood contains no points aside from p.

Now, suppose $x \neq p$. Then

$$d(x,p) = |x| + |p| \ge \frac{1}{2}|p|,$$

from which we deduce that $x \notin \mathcal{N}_{\frac{1}{2}|p|}(p)$.

We now prove that *S* is open. First observe that given any $p \neq (0,0)$, we have $\frac{1}{2}|p| > 0$, whence (by the lemma) there exists a neighbourhood around *p* which consists entirely of *p*. It follows that for any $p \neq (0,0)$, the singleton set $\{p\}$ is open. Since arbitrary unions of open sets are open, we conclude that *S* is open.

(b) (6 points) Is *S* closed in the metric space (\mathbb{R}^2 , *d*)? Prove it or carefully explain why not.

Yes, S is closed. It suffices to show that the complement \mathbb{R}^2-S is open. Note that

$$\mathbb{R}^2 - S = \left\{ x \in \mathbb{R}^2 : |x| < \frac{1}{10} \right\} \cup \left\{ x \in \mathbb{R}^2 - S : x \neq (0,0) \right\}.$$
 (*)

We now show each of the sets on the right hand side is open; this will prove that $\mathbb{R}^2 - S$ is open, since unions of open sets are open.

First, we have

$$\left\{ x \in \mathbb{R}^2 : |x| < \frac{1}{10} \right\} = \left\{ x \in \mathbb{R}^2 : d(x, (0, 0)) < \frac{1}{10} \right\}$$
$$= \mathcal{N}_{\frac{1}{10}} ((0, 0)).$$

Since we proved in class that in any metric space, $\mathcal{N}_r(p)$ is open for any r > 0, we conclude that $\{x \in \mathbb{R}^2 : |x| < \frac{1}{10}\}$ is open.

Next, observe that

$$\left\{ x \in \mathbb{R}^2 - S : x \neq (0,0) \right\} = \bigcup_{\substack{x \in \mathbb{R}^2 - S \\ x \neq (0,0)}} \{x\}.$$

Just as in part (a), it follows that $\{x \in \mathbb{R}^2 - S : x \neq (0,0)\}$ must be open, since it is the union of open sets.

We have thus shown that both sets on the right hand side of (*) are open. We conclude that $\mathbb{R}^2 - S$ is open, and hence, that S is closed.

continued on page 4

(3) (a) (5 points) Let

$$a_n := \begin{cases} 1/2 & \text{if } n = 2^k \text{ for some } k \in \mathbb{N} \\ \frac{1}{n^2} & \text{otherwise.} \end{cases}$$

Does $\sum_{n=1}^{\infty} a_n$ converge? Justify your answer with a proof.

Note that (a_n) does not tend to 0 as $n \to \infty$, since for all N, there exists n > N such that $|a_n - 0| = \frac{1}{2}$. It follows that the series cannot converge, since for any convergent series, the terms must tend to 0.

(b) (5 points) Let $b_n := \frac{2^n}{n!}$ for all $n \in \mathbb{N}$. Does $\sum_{n=1}^{\infty} b_n$ converge? Justify your answer with a proof.

We apply the ratio test:

$$\lim_{n \to \infty} \frac{b_{n+1}}{b_n} = \lim_{n \to \infty} \frac{n!}{(n+1)!} \cdot \frac{2^{n+1}}{2^n}$$
$$= \lim_{n \to \infty} \frac{2}{n+1}$$
$$= 0$$

(The limit tends to 0 because, for any $\epsilon > 0$, we have $\left|\frac{2}{n+1} - 0\right| < \epsilon$ whenever $n > \frac{2}{\epsilon} - 1$.)

In particular, we see that $\lim_{n\to\infty} \frac{b_{n+1}}{b_n} < 1$. The ratio test implies that the series converges.

(4) (30 points) Prove Hölder's inequality: for any p, q > 1 such that 1/p + 1/q = 1, for any sequences $(a_n), (b_n)$ of real numbers, for any $N \in \mathbb{N}$, we have

$$\left|\sum_{n=1}^{N} a_n b_n\right| \le \left(\sum_{n=1}^{N} |a_n|^p\right)^{1/p} \left(\sum_{n=1}^{N} |b_n|^q\right)^{1/q}.$$

See lecture summaries.

(5) (a) (10 points) Prove the Monotone Subsequence theorem: every sequence of real numbers contains a monotone subsequence.

See lecture summaries.

(b) (10 points) Prove the Bolzano-Weierstrass theorem: every bounded sequence has a convergent subsequence.

See lecture summaries.

(c) (10 points) Prove the Cauchy criterion: a sequence of real numbers (a_n) converges if and only if (a_n) is Cauchy.

See lecture summaries.