
LECTURE 24: SUMMARY

Last time, we discussed the notion of a limit point: in a metric space (X, d), a point ` ∈ X is a
limit point of S ⊆ X iff ` is the limit of some sequence (of distinct elements) in S. Further, we
showed that this holds iff every neighbourhood of ` contains some point of S (other then ` itself).

What are the limit points of the open interval (0, 1) (in R, under the usual metric)? First, every
single point in (0, 1) is a limit point of (0, 1) (can you prove this?). But there are also two points
which aren’t in (0, 1) which are limit points: 0 and 1. Thus, the set of limit points of the open
interval (0, 1) is the closed interval [0, 1]. The set of limit points of the closed interval [0, 1] is
simply itself; no sequence of points ever converges to something outside the set itself. Inspired by
this, we say that a set is closed if no sequence of points in the set converges to something outside
the set. More precisely:

Definition. Given (X, d) a metric space. We say C ⊆ X is closed iff C contains all of its limit
points.

Thus, for example, the closed interval [a, b] is closed in R (under the usual metric). The unit disk
{z ∈ R2 : |z| ≤ 1} is closed in R2 (under the Euclidean metric). And in any metric space, the set
consisting of a single point is closed, since there are no limit points of such a set!

We now arrive at a fundamental result connecting open and closed sets.

Theorem 1. Given a metric space (X, d) and a set A ⊆ X , let Ac := X −A. Then A is open iff
Ac is closed.

Proof. As usual, we do the two directions separately.

(=⇒)

Given A open. We want to show Ac is closed, i.e. that Ac contains all of its limit
points. We do this by showing that no point of A is a limit point of Ac.

Take any α ∈ A. Since A is open, there exists a neighbourhood N of α which is
entirely contained in A. It follows that N ∩ Ac = ∅, so α cannot be a limit point
of Ac.

(⇐=)

Suppose Ac is closed. We want to show that A is open, i.e. that every point of A
lives in a neighbourhood entirely contained in A.

Date: April 4th, 2013.



Pick any α ∈ A. Since Ac is closed, it contains all its limit points, so α can’t be
a limit point of Ac. It follows that there exists a neighbourhood N of α such that
N ∩Ac = ∅. But this implies that N ⊆ A.

�

Note that this theorem does not say that every subset ofX is either open or closed. Some sets (such
as [0, 1) in R) are neither; other sets (such as ∅, or the entire space X) are both. Still, the duality in
the theorem above is useful. For example:

Corollary 2. Arbitrary intersections of closed sets are closed.

Proof. Given a collection {Cα} of closed sets. Then⋂
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Since Ccα is open for each α, and arbitrary unions of opens are open, we conclude that
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open. But this implies that
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Cα is closed. �

Similarly, we can easily prove

Corollary 3. Finite unions of closed sets are closed.

Note that the assumption of finiteness is necessary here. For example,⋃
n∈N

[
1

n
, 1− 1

n

]
= (0, 1).

We finished lecture by discussing the Cantor set. This is a subset of [0, 1] which is formed by
removing countably many disjoint intervals from [0, 1]. Despite the fact that the sum of all the
lengths of the removed intervals equals 1, the Cantor set contains uncountably many points. It is
also closed (in R).


