LECTURE 24: SUMMARY

Last time, we discussed the notion of a limit point: in a metric space (X, d), a point $\ell \in X$ is a limit point of $S \subseteq X$ iff ℓ is the limit of some sequence (of distinct elements) in S. Further, we showed that this holds iff every neighbourhood of ℓ contains some point of S (other then ℓ itself).

What are the limit points of the open interval (0, 1) (in \mathbb{R} , under the usual metric)? First, every single point in (0, 1) is a limit point of (0, 1) (can you prove this?). But there are also two points which aren't in (0, 1) which are limit points: 0 and 1. Thus, the set of limit points of the open interval (0, 1) is the closed interval [0, 1]. The set of limit points of the closed interval [0, 1] is simply itself; no sequence of points ever converges to something outside the set itself. Inspired by this, we say that a set is closed if no sequence of points in the set converges to something outside the set. More precisely:

Definition. Given (X, d) a metric space. We say $C \subseteq X$ is closed iff C contains all of its limit points.

Thus, for example, the closed interval [a, b] is closed in \mathbb{R} (under the usual metric). The unit disk $\{z \in \mathbb{R}^2 : |z| \leq 1\}$ is closed in \mathbb{R}^2 (under the Euclidean metric). And in any metric space, the set consisting of a single point is closed, since there are no limit points of such a set!

We now arrive at a fundamental result connecting open and closed sets.

Theorem 1. Given a metric space (X, d) and a set $\mathcal{A} \subseteq X$, let $\mathcal{A}^c := X - \mathcal{A}$. Then \mathcal{A} is open iff \mathcal{A}^c is closed.

Proof. As usual, we do the two directions separately.

 (\Longrightarrow)

Given \mathcal{A} open. We want to show \mathcal{A}^c is closed, i.e. that \mathcal{A}^c contains all of its limit points. We do this by showing that no point of \mathcal{A} is a limit point of \mathcal{A}^c .

Take any $\alpha \in \mathcal{A}$. Since \mathcal{A} is open, there exists a neighbourhood \mathcal{N} of α which is entirely contained in \mathcal{A} . It follows that $\mathcal{N} \cap \mathcal{A}^c = \emptyset$, so α cannot be a limit point of \mathcal{A}^c .

 (\Leftarrow)

Suppose \mathcal{A}^c is closed. We want to show that \mathcal{A} is open, i.e. that every point of \mathcal{A} lives in a neighbourhood entirely contained in \mathcal{A} .

Date: April 4th, 2013.

Pick any $\alpha \in \mathcal{A}$. Since \mathcal{A}^c is closed, it contains all its limit points, so α can't be a limit point of \mathcal{A}^c . It follows that there exists a neighbourhood \mathcal{N} of α such that $\mathcal{N} \cap \mathcal{A}^c = \emptyset$. But this implies that $\mathcal{N} \subseteq \mathcal{A}$.

Note that this theorem does *not* say that every subset of X is either open or closed. Some sets (such as [0, 1) in \mathbb{R}) are neither; other sets (such as \emptyset , or the entire space X) are both. Still, the duality in the theorem above is useful. For example:

Corollary 2. Arbitrary intersections of closed sets are closed.

Proof. Given a collection $\{C_{\alpha}\}$ of closed sets. Then

$$\bigcap_{\alpha} \mathcal{C}_{\alpha} = \bigcap_{\alpha} (X - \mathcal{C}_{\alpha}^{c}) = X - \bigcup_{\alpha} \mathcal{C}_{\alpha}^{c} = \left(\bigcup_{\alpha} \mathcal{C}_{\alpha}^{c}\right)^{c}.$$

Since C^c_{α} is open for each α , and arbitrary unions of opens are open, we conclude that $\bigcup C^c_{\alpha}$ is

open. But this implies that $\left(\bigcup_{\alpha} \mathcal{C}_{\alpha}^{c}\right)^{c} = \bigcap_{\alpha} \mathcal{C}_{\alpha}$ is closed.

Similarly, we can easily prove

Corollary 3. Finite unions of closed sets are closed.

Note that the assumption of finiteness is necessary here. For example,

$$\bigcup_{n \in \mathbb{N}} \left\lfloor \frac{1}{n}, 1 - \frac{1}{n} \right\rfloor = (0, 1).$$

We finished lecture by discussing the Cantor set. This is a subset of [0, 1] which is formed by removing countably many disjoint intervals from [0, 1]. Despite the fact that the sum of all the lengths of the removed intervals equals 1, the Cantor set contains uncountably many points. It is also closed (in \mathbb{R}).