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understand that I must write down the final version of my assignment in isolation from any other person.
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Problem Set 3
I recommend proceeding in order, as some problems are easier to solve using the results of prior problems.

3.1 Suppose (an) and (bn) are sequences such that lim
n→∞

an = A and lim
n→∞

bn = B.

(a) Prove that lim
n→∞

(an + bn) = A+B.

(b) Prove that lim
n→∞

anbn = AB.

(c) Prove that lim
n→∞

|an| = |A|.

3.2 Suppose (an) and (cn) are convergent sequences.

(a) Prove that if an ≤ cn for all n ∈ N, then lim
n→∞

an ≤ lim
n→∞

cn.

(b) Prove that if an ≤ bn ≤ cn for all n ∈ N, and if lim
n→∞

an = lim
n→∞

cn, then (bn) is convergent. Moreover, show

that lim
n→∞

an = lim
n→∞

bn.

3.3 (a) Given sequences (an) and (bn) such that

∞∑
n=1

an and

∞∑
n=1

(an + bn) converge. Prove that

∞∑
n=1

bn must

converge as well.

(b) Give a new proof (different from the one given in class) of the following statemnt: if

∞∑
n=1

|an| converges,

then so does

∞∑
n=1

an. [Hint: consider
∑

(an + |an|).]

3.4 Suppose (an) is a sequence such that lim
n→∞

a2n = A = lim
n→∞

a2n−1. Prove that lim
n→∞

an = A.

3.5 Determine (with proof!) lim
n→∞

(
√
n+ 3−

√
n).

3.6 Show (by example) that it’s possible to have a bounded sequence (an) and a convergent sequence (bn) such
that both (an + bn) and (anbn) diverge.

3.7 Let a1 > 1, and suppose an+1 = 2 − 1/an for all n ≥ 1. Prove that (an) converges, and find its limit.
[Hint: the sequence is bounded and monotone.]

3.8 Let 0 ≤ α < 1, and let f : R → R be a function which satisfies |f(x) − f(y)| ≤ α|x − y| for all x, y ∈ R.
Pick a1 ∈ R, and set an+1 := f(an) for all n ∈ N. Prove that (an) converges. [Hint: Cauchy criterion.]

3.9 Suppose (an) is bounded, and that every convergent subsequence of (an) has limit A. Prove that

lim
n→∞

an = A.
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3.10 Suppose (an) is a monotonically decreasing sequence of positive numbers, and that

∞∑
n=1

an converges.

Prove that lim
n→∞

nan = 0.

3.11 Prove that if

∞∑
n=1

an converges absolutely, then

∞∑
n=1

a2n converges.

3.12 For which values of x do the following series converge?

(a)

∞∑
n=1

x2n−1

(2n− 1)!

(b)

∞∑
n=1

n(x− 1)n

2n

3.13 Let (an) be a bounded sequence of real numbers. Does there exist a subsequence of (ank
) which is

convergent, and such that nk is a perfect square for all k?

3.14 Let (an) be a sequence of non-negative real numbers, and suppose

∞∑
n=1

an diverges. Prove that

∞∑
n=1

√
an

also diverges.

3.15 For each of the following, determine (with proof!) whether

∞∑
n=1

an converges or diverges.

(a) an =
n

2n

(b) an =
n!

nn

(c) an = (log n)−n

(d) an =
(n!)2

(2n)!

(e) an =

{
1
n if n is not a multiple of 3
−1
n if n is a multiple of 3
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