Instructor: Leo Goldmakher

NAME: _____

University of Toronto Scarborough Department of Computer and Mathematical Sciences

MATB43: INTRODUCTION TO ANALYSIS

Problem Set 3 – due Thursday, March 21, during the first 5 minutes of lecture.

INSTRUCTIONS: Please print and attach this page as the first page of your submitted problem set.

PROBLEM	MARK
3.1	
3.2	
3.3	
3.4	
3.5	
3.6	
3.7	
3.8	
3.9	
3.10	
3.11	
3.12	
3.13	
3.14	
3.15	
Total	

Please read the following statement and sign below:

I understand that I am not allowed to use the internet to assist (in any way) with this assignment. I also understand that I must write down the final version of my assignment in isolation from any other person.

SIGNATURE:_____

Problem Set 3

I recommend proceeding in order, as some problems are easier to solve using the results of prior problems.

3.1 Suppose (a_n) and (b_n) are sequences such that $\lim_{n \to \infty} a_n = A$ and $\lim_{n \to \infty} b_n = B$.

- (a) Prove that $\lim_{n \to \infty} (a_n + b_n) = A + B$.
- (b) Prove that $\lim_{n \to \infty} a_n b_n = AB$.
- (c) Prove that $\lim_{n \to \infty} |a_n| = |A|$.

3.2 Suppose (a_n) and (c_n) are convergent sequences.

(a) Prove that if $a_n \leq c_n$ for all $n \in \mathbb{N}$, then $\lim_{n \to \infty} a_n \leq \lim_{n \to \infty} c_n$.

(b) Prove that if $a_n \leq b_n \leq c_n$ for all $n \in \mathbb{N}$, and if $\lim_{n \to \infty} a_n = \lim_{n \to \infty} c_n$, then (b_n) is convergent. Moreover, show that $\lim_{n \to \infty} a_n = \lim_{n \to \infty} b_n$.

3.3 (a) Given sequences (a_n) and (b_n) such that $\sum_{n=1}^{\infty} a_n$ and $\sum_{n=1}^{\infty} (a_n + b_n)$ converge. Prove that $\sum_{n=1}^{\infty} b_n$ must converge as well.

(b) Give a new proof (different from the one given in class) of the following statement: if $\sum_{n=1}^{\infty} |a_n|$ converges, then so does $\sum_{n=1}^{\infty} a_n$. [*Hint: consider* $\sum (a_n + |a_n|)$.]

3.4 Suppose (a_n) is a sequence such that $\lim_{n \to \infty} a_{2n} = A = \lim_{n \to \infty} a_{2n-1}$. Prove that $\lim_{n \to \infty} a_n = A$.

3.5 Determine (with proof!) $\lim_{n \to \infty} (\sqrt{n+3} - \sqrt{n}).$

3.6 Show (by example) that it's possible to have a bounded sequence (a_n) and a convergent sequence (b_n) such that both $(a_n + b_n)$ and $(a_n b_n)$ diverge.

3.7 Let $a_1 > 1$, and suppose $a_{n+1} = 2 - 1/a_n$ for all $n \ge 1$. Prove that (a_n) converges, and find its limit. [*Hint: the sequence is bounded and monotone.*]

3.8 Let $0 \le \alpha < 1$, and let $f : \mathbb{R} \to \mathbb{R}$ be a function which satisfies $|f(x) - f(y)| \le \alpha |x - y|$ for all $x, y \in \mathbb{R}$. Pick $a_1 \in \mathbb{R}$, and set $a_{n+1} := f(a_n)$ for all $n \in \mathbb{N}$. Prove that (a_n) converges. [Hint: Cauchy criterion.]

3.9 Suppose (a_n) is bounded, and that every convergent subsequence of (a_n) has limit A. Prove that

$$\lim_{n \to \infty} a_n = A.$$

3.10 Suppose (a_n) is a monotonically decreasing sequence of positive numbers, and that $\sum_{n=1}^{\infty} a_n$ converges. Prove that $\lim_{n \to \infty} na_n = 0$.

3.11 Prove that if
$$\sum_{n=1}^{\infty} a_n$$
 converges absolutely, then $\sum_{n=1}^{\infty} a_n^2$ converges.

3.12 For which values of x do the following series converge?

(a)
$$\sum_{n=1}^{\infty} \frac{x^{2n-1}}{(2n-1)!}$$

(b) $\sum_{n=1}^{\infty} \frac{n(x-1)^n}{2^n}$

3.13 Let (a_n) be a bounded sequence of real numbers. Does there exist a subsequence of (a_{n_k}) which is convergent, and such that n_k is a perfect square for all k?

3.14 Let (a_n) be a sequence of non-negative real numbers, and suppose $\sum_{n=1}^{\infty} a_n$ diverges. Prove that $\sum_{n=1}^{\infty} \sqrt{a_n}$ also diverges.

3.15 For each of the following, determine (with proof!) whether $\sum_{n=1}^{\infty} a_n$ converges or diverges.

(a)
$$a_n = \frac{n}{2^n}$$

(b) $a_n = \frac{n!}{n^n}$
(c) $a_n = (\log n)^{-n}$
(d) $a_n = \frac{(n!)^2}{(2n)!}$
(e) $a_n = \begin{cases} \frac{1}{n} & \text{if } n \text{ is not a multiple of } 3 \\ \frac{-1}{n} & \text{if } n \text{ is a multiple of } 3 \end{cases}$