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Recall that we’re studying the plane isometries, in particular trying to prove the following classifi-
cation theorem:

Theorem 1. Every isometry of the plane is either a translation, a rotation, or a glide reflection.

We saw last time that drawing pictures is not helpful: we constructed a complicated composition
of isometries which, by the theorem, must be a glide reflection, but which would be impossible
to guess from a picture. Instead, we approach the problem algebraically. In other words, we first
describe translations, rotations, and glide reflections in terms of variables; then we write down all
relationships among these; then we manipulate the relationships to simplify them; then we translate
back into the language of isometries. In this lecture, we focused on the translation into variables.

TRANSLATIONS: Of the three types of isometries, these are the easiest to describe algebraically.
If we want to translate every point over 1 unit and down 2 units, we could just apply the function

T : R2 −→R2

(x, y) 7−→(x+ 1, y − 2)

Of course, if we’re going to deal with different translations, calling this particular one just ‘T ’ isn’t
great; what would we call the translation which moves everything over 4 and up 1? Instead, we
incorporate the instructions into the name of the function. For example, the above translation we’ll
call T(1,−2). More generally, given A ∈ R2 we can define translation by A:

TA : R2 −→R2

X 7−→X + A

ROTATIONS: These are not so easy to define. Let’s start with the simplest type of rotation: we’ll
denote by Rα the counterclockwise rotation by α radians around the origin. How can we describe
this algebraically? Kaidi suggested looking at the plane in polar coordinates, rather than in rectan-
gular. Recall that this means that rather than labeling a point P as (x, y), we instead label it (r, θ),
where r is the distance from P to the origin and θ is the angle formed between the x-axis and the
segment connecting P to the origin. The advantage of polar coordinates is that it’s easy to rotate
around the origin: Rα(r, θ) = (r, θ+α). The disadvantage is that usually we think about points in
terms of rectangular coordinates, not polar. But this isn’t a big problem: we can always translate
between polar and rectangular when we need to, by using the relations

x = r cos θ and y = r sin θ.

For example, what is Rπ/3(−1,
√

3)? First, we convert to polar coordinates:
rectangular  polar

(−1,
√

3) (2, 2π/3)
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Rotating by π/3 gives the point (2, π), in polar coordinates. Translating back into rectangular
yields

Rπ/3(−1,
√

3) = (−2, 0).

Having warmed up on this example, let’s turn to the general case. What is Rα(x, y) in rectangular
coordinates? Let (r, θ) denote the name of (x, y) in polar. Then

Rα(x, y) = Rα(r, θ)

= (r, θ + α) (in polar)

=
(
r cos(θ + α), r sin(θ + α)

)
(in rectangular)

=
(
r(cos θ)(cosα)− r(sin θ)(sinα), r(cos θ)(sinα) + r(sin θ)(cosα)

)
= (x cosα− y sinα, x sinα + y cosα)

Thus, we’ve solved the problem of expressing rotations around the origin in algebraic terms. How-
ever, this formula is ugly. It turns out we can make it look a lot nicer by using the language of

linear algebra. Given a point (x, y) in the plane, denote it by
(
x
y

)
. Then we see that

Rα

(
x
y

)
=

(
cosα − sinα
sinα cosα

)(
x
y

)
.

In other words, the isometry Rα acts like multiplication by
(

cosα − sinα
sinα cosα

)
.

To get a better feel for this, we tried an example. What is Rπ/2(x, y)? Well, the matrix cor-

responding to Rπ/2 is
(

0 −1
1 0

)
. We have

(
0 −1
1 0

)(
x
y

)
=

(
−y
x

)
, whence we deduce that

Rπ/2(x, y) = (−y, x). In other words, when rotating a point around the origin by π/2, you can just
flip the two coordinates and put a minus sign in front of the first one. Thus, we see that

R2
π/2(x, y) = Rπ/2(−y, x) = (−x,−y) = −(x, y),

or in other words,

R2
π/2 = −1.

This looks a lot like the definition of the imaginary number i:

i2 = −1.

As it turns out, this isn’t a coincidence. We spent some time discussing the complex numbers

C := {a+ bi : a, b ∈ R}.

Originally they arose from the cubic formula, but eventually were seen to be useful for all sorts of
applications. Among other things, we can think of the plane R2 as C, by relabeling the point (x, y)
by the complex number x + yi. What is the analogue of polar coordinates in C? Well, we know
that x = r cos θ and y = r sin θ, so in terms of r and θ we can write

x+ yi = r cos θ + ir sin θ = r(cos θ + i sin θ).



Euler noticed a funny thing about this way of writing complex numbers. Plugging in the Taylor
series for cos θ and sin θ, we see that

cos θ + i sin θ = 1 + iθ − θ2

2!
− iθ3

3!
+
θ4

4!
+ · · ·

This is highly reminiscent of the Taylor series for et:

et = 1 + t+
t2

2!
+
t3

3!
+ · · ·

A little thought shows that the two series agree if we plug in t = iθ. In other words, we have

eiθ = cos θ + i sin θ.

Thus, we have the following dictionary between polar coordinates in R2 and complex polar coor-
dinates:

polar in R2  polar in C
(r, θ) reiθ

This may look like just more notation, but it’s actually a marvelous computational tool. For ex-
ample, suppose we want to figure out Rπ/3(

√
3,−1). First, we convert (

√
3,−1) to complex polar

coordinates:
(
√

3,−1) 2e−iπ/6.

Next, we apply the rotation, which simply adds to the angle:

Rπ/3(2e
−iπ/6) = 2ei(−π/6+π/3)

= 2eiπ/6.

Finally, we convert back to rectangular coordinates:

2eiπ/6 = 2(cosπ/6 + i sin π/6) =
√

3 + i.

Thus, Rπ/3(
√

3,−1) = (
√

3, 1).

Having explored this example, we reinterpreted Rα in terms of C. Given any point z ∈ C, we can
write in complex polar coordinates as reiθ. Rotating by α simply adds to the angle, whence we
have

Rα(z) = rei(θ+α)

= reiθeiα

= eiαz.

In other words, we now have an extremely short algebraic description of rotation, as long as we
interpret the plane as C rather than as R2:

Rα : C −→ C
z 7−→ eiαz;

in other words, rotation by α acts on the complex plane like multiplication by eiα.



We concluded our discussion of rotations by reconsidering our earlier example Rπ/2. In the com-
plex interpretation, we have Rπ/2(z) = eiπ/2z = iz. Thus,

Rπ/2(x+ yi) = i(x+ yi) = ix+ yi2 = −y + xi

exactly as before. Moreover, R2
π/2(z) = i2z = −z. So, R2

π/2 behaves like multiplication by −1.

REFLECTIONS: We finished class by discussing reflections. As a warm-up, we started by consid-
ering the reflection across the x-axis, which we called ρ (this is the Greek letter rho):

ρ : R2 −→ R2

(x, y) 7−→ (x,−y)

We can also state this in terms of the complex interpretation:
ρ : C −→ C

z 7−→ z̄

where z̄, called the conjugate of z, is defined by

x+ yi := x− yi
for all x, y ∈ R. We ended by stating (without proof) a few nice properties of conjugation:

(1) For all z ∈ C, we have |z|2 = zz̄, where |z| denotes the distance from z to the origin.

(2) For all z, w ∈ C, we have z + w = z̄ + w̄ and zw = z̄w̄.

Next lecture, we’ll turn to more general rotations and reflections (i.e. not just those around the
origin / across the x-axis).
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