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Problem Set 1

1.1 In this problem, you will explore complex numbers and their properties.

(a) Prove that for all z ∈ C, we have |z|2 = zz̄.

(b) Prove that for any z, w ∈ C, we have zw = z̄w̄.

(c) Simplify reiθ. (Give your answer in complex polar coordinates.)

(d) Evaluate (1 + 2i)2. (Give your answer in the form a+ bi.)

(e) Determine all compex solutions z to the equation z2 = i.

(f) Rewrite 3e7πi/6 in the form a+ bi.

(g) Rewrite −3
√

2 + 3i
√

2 in complex polar coordinates.

(h) Rewrite −5 in complex polar coordinates.

(i) Evaluate R2π/3(3 − 2i). Give your answer in the form a + bi. No approximations: your answer must be
exact! [Hint: you do not need to calculate arctan(−2/3) at any time to solve this problem.]

1.2 Prove that the composition of two isometries is an isometry.

1.3 Prove that an isometry is a bijection. [Recall that this is usually accomplished in two steps: first, prove
that an isometry is an injection (i.e. that if f(X) = f(Y ) then X = Y ); then prove that an isometry is a
surjection (i.e. that for all Y ∈ R2 there exists an X ∈ R2 such that f(X) = Y ).]

1.4 Prove that the inverse of an isometry is an isometry.

1.5 We say that a function f : R2 → R2 is linear iff for all α, β ∈ R and all X,Y ∈ R2 we have

f(αX + βY ) = αf(X) + βf(Y ).

Prove that f : R2 → R2 is a linear map iff there exist a, b, c, d ∈ R such that f acts like multiplication by(
a b
c d

)
. [Comment: This problem shows that linear algebra is actually the study of linear maps.]
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