Instructor: Leo Goldmakher

NAME: _____

University of Toronto Scarborough Department of Computer and Mathematical Sciences

MATC01: GROUPS AND SYMMETRY

Problem Set 10 - due Monday, November 29th

INSTRUCTIONS:

To receive credit, you must turn this in during the first 5 minutes of lecture on the due date. Please print and attach this page as the first page of your submitted problem set.

PROBLEM	MARK
Staple	
Coverpage	
10.1	
10.2	
10.3	
10.4	
10.5	
10.6	
10.7	
10.8	
10.9	
Total	

Please read the following statement and sign below:

I understand that I am not allowed to use the internet to assist (in any way) with this assignment. I also understand that I must write down the final version of my assignment in isolation from any other person.

SIGNATURE:_____

Problem Set 10

I recommend proceeding in order, as some problems are easier to solve using the results of prior problems.

10.1 Recall that the set $\mathbb{Z}/n\mathbb{Z} = \{[0], [1], \dots, [n-1]\}$ forms a group under addition: [a] + [b] := [a+b]. We now define a new binary operation, multiplication: $[a] \cdot [b] := [ab]$. For example, in $\mathbb{Z}/7\mathbb{Z}$ we have $[3] \cdot [4] = [5]$. (a) Prove that $\mathbb{Z}/7\mathbb{Z} - \{[0]\}$ forms a group under multiplication. Why do we have to remove the element [0]?

(b) Find the smallest set S such that $\mathbb{Z}/8\mathbb{Z} - S$ forms a group under multiplication.

10.2 The goal of this exercise is to prove the following:

Theorem. Suppose the order of a group Γ is a multiple of 3. Then Γ has an element of order 3.

In fact, this statement holds with 3 replaced by any prime, but you don't need to prove this.

Proof. Let

$$A := \{(x, y, z) \in \Gamma^3 : xyz = e\}$$

In words, A is the set of all *ordered* triples of elements of Γ whose product is the identity. Consider the function

Let A^{σ} denote the set of all fixed points of σ , i.e.

$$A^{\sigma} := \{ a \in A : \sigma(a) = a \}.$$

Observe that A^{σ} is nonempty, since it contains the trivial fixed point (e, e, e).

(a) Prove that if there exists a nontrivial fixed point of σ , then Γ contains an element of order 3.

(b) Prove that $A - A^{\sigma} = \bigcup_{a \in A - A^{\sigma}} [a]_{\sigma}$, where $[a]_{\sigma} := \{f(a) : f \in \langle \sigma \rangle\}$. (Here $\langle \sigma \rangle$ denotes the subgroup of S_A generated by σ .)

(c) Prove that for all $a, b \in A$, either $[a]_{\sigma} = [b]_{\sigma}$ or $[a]_{\sigma} \cap [b]_{\sigma} = \emptyset$.

(d) Prove that $|A - A^{\sigma}|$ is a multiple of 3.

(e) Conclude the proof of the theorem. [*Hint: What can you say about* |A|?]

10.3 The theorem above holds when 3 is replaced by any prime (you don't need to prove this). However, show by example that 3 cannot be replaced by an arbitrary integer. In other words, find a group Γ and a divisor d of $|\Gamma|$ such that Γ has no elements of order d.

10.4 Consider the following group presentation:

$$\Gamma = \langle \alpha, \beta : \alpha^3 = 1, \beta^3 = 1, \beta \alpha = \alpha^2 \beta \rangle$$

- (a) Express $\alpha^2 \beta^5 \alpha^{-2} \beta$ in the form $\alpha^m \beta^n$, where $0 \le m \le 2$ and $0 \le n \le 2$.
- (b) Determine the order of Γ .

10.5 Given a group Γ , let $Z(\Gamma) = \{a \in \Gamma : ag = ga \text{ for every } g \in \Gamma\}.$

(a) Prove that $Z(\Gamma) \trianglelefteq \Gamma$.

(b) Suppose $\Gamma/Z(\Gamma)$ is cyclic. Prove that Γ is abelian. [*Hint: Prove that there exists* $g \in \Gamma$ such that $\Gamma = \bigcup_{n \in \mathbb{Z}} g^n Z(\Gamma)$. Conclude.]

10.6 Suppose that a non-trivial group Γ has no non-trivial proper subgroups.

- (a) Prove that Γ is cyclic.
- (b) Prove that Γ has finite order. [*Hint: Suppose* Γ were infinite, and derive a contradiction.]
- (c) Prove that Γ has prime order. [*Hint: Say* $\Gamma = \langle g \rangle$ and has order n. What can you say about $\langle g^2 \rangle$? $\langle g^3 \rangle$?]

10.7 Suppose H and K are groups. Consider the set $H \times K$ under the binary operation defined by

$$(h_1, k_1) \cdot (h_2, k_2) := (h_1 h_2, k_1 k_2).$$

- (a) Prove that $H \times K$ is a group under this operation. If H and K are both finite, what is the order of $H \times K$?
- (b) Prove that $(H \times \{e_K\}) \leq (H \times K)$.

(c) Prove that $(H \times K)/(H \times \{e_K\}) \simeq K$. [Hint: First prove that [(x, y)] = (H, y) for any $(x, y) \in H \times K$.]

10.8 Given Γ a group, recall that S_{Γ} denotes the group of all bijections from Γ to itself (under composition). Given $g \in \Gamma$, define the function

$$\phi_g: \Gamma \longrightarrow \Gamma$$
$$a \longmapsto ga$$

Thus, we have a bunch of different functions ϕ_g , one for each $g \in \Gamma$.

- (a) Prove that $\phi_g \in S_{\Gamma}$ for every $g \in \Gamma$.
- (b) Let $\phi: \Gamma \to S_{\Gamma}$ be the function defined by $\phi(g) = \phi_g$. Prove that ϕ is an injective homomorphism.
- (c) Deduce that any group Γ is isomorphic to a subgroup of S_{Γ} .

10.9 Given $k \in \mathbb{N}$, we denote $S_{\{1,2,\ldots,k\}}$ by S_k ; this is usually called the symmetric group on k letters.

- (a) Prove that $S_m \times S_n$ is isomorphic to a subgroup of S_{m+n} .
- (b) Use part (a) to prove that m! n! | (m+n)!