UNIVERSITY OF TORONTO SCARBOROUGH

MATC15: Introduction to Number Theory FINAL EXAMINATION April 23, 2013

Duration – 3 hours Aids: none

NAME (PRINT):

(,	Last/Surname	First/Given Name (and nickname)					
STUDENT NO:							
		Qn. #	Value	Score			
		1	10	Score			
		2	10				
		3	10				
		4	10				
		5	30				
		6	30				
		Total	100				
	П						
		TOTAL	ı .		_		
Please read the follo	wing statement and	sign belo	ow:				
I understand that any signing below, I pledge			a violatio	on of The	e Code of Behaviour on Academic Matters. By		
SIGNATURE:							

- (1) For the problem below, you may use (without proof) that 1307 is prime.
 - (a) (5 points) Determine the value of the Legendre symbol $(\frac{5}{1307})$.

By Quadratic Reciprocity, we have

$$\left(\frac{5}{1307}\right)\left(\frac{1307}{5}\right) = (-1)^{2 \cdot \frac{1307 - 1}{2}} = 1$$
 (*) Now, $\left(\frac{1307}{5}\right) = \left(\frac{2}{5}\right)$. By Euler's Criterion, we have

$$\left(\frac{2}{5}\right) \equiv 2^{\frac{5-1}{2}} \pmod{5} \equiv 4 \pmod{5},$$

from which we deduce that $\left(\frac{2}{5}\right) = -1$. Plugging this into (*) yields

$$\left(\frac{5}{1307}\right) = -1.$$

(b) (5 points) Find all $x \in \mathbb{Z}$ such that $1307 \mid x^2 - 5$.

By part (a), 5 is a quadratic non-residue (mod 1307), i.e.

$$x^2 \not\equiv 5 \pmod{1307}$$

for all x. It follows that $1307 \nmid x^2 - 5$ for all $x \in \mathbb{Z}$. So, there are no solutions.

(2) (a) (5 points) Use the Euclidean algorithm to determine (37, 50).

We have

$$50 = 1 \times 37 + 13$$
$$37 = 2 \times 13 + 11$$
$$13 = 1 \times 11 + 2$$
$$11 = 5 \times 2 + 1$$
$$2 = 2 \times 1 + 0.$$

Thus, (37, 50) = 1.

(b) (5 points) Solve the equation 37x = 3 in \mathbb{Z}_{50}^{\times} . (You must show work to receive credit!)

Since (37,50) = 1, we see that $37 \in \mathbb{Z}_{50}^{\times}$. Thus, we can divide both sides by 37:

$$x = 37^{-1} \cdot 3$$
.

Thus we just have to determine 37^{-1} in \mathbb{Z}_{50}^{\times} .

From part (a) we have

$$1 = 11 - 5 \times 2$$

$$= 11 - 5 \times (13 - 1 \times 11)$$

$$= -5 \times 13 + 6 \times 11$$

$$= -5 \times 13 + 6 \times (37 - 2 \times 13)$$

$$= 6 \times 37 - 17 \times 13$$

$$= 6 \times 37 - 17 \times (50 - 37)$$

$$= 23 \times 37 - 17 \times 50$$

It immediately follows that $23 \times 37 = 1$ in \mathbb{Z}_{50}^{\times} , i.e. $37^{-1} = 23$. Thus, the unique solution to our equation is

$$x = 37^{-1} \cdot 3 = 19.$$

(3) (a) (2 points) List all elements of \mathbb{Z}_{10}^{\times} .

1, 3, 7, 9

(b) (3 points) Write down the multiplication table for \mathbb{Z}_{10}^{\times} .

×	1	3	7	9
1	1	3	7	9
3	3	9	1	7
7	7	1	9	3
9	9	7	3	1

(c) (3 points) Determine the order of each element of \mathbb{Z}_{10}^{\times} .

If $\ell_a(n)$ denotes the order of $a \pmod n$, then $\ell_1(10) = 1$ (because $1^1 = 1$), $\ell_3(10) = 4$ (because $3^4 = 1$ and $3^k \neq 1$ for k < 4), $\ell_7(10) = 4$ (because $7^4 = 1$ and $4^k \neq 1$ for $4^$

(d) (2 points) Find all primitive roots of \mathbb{Z}_{10}^{\times} .

Recall that $a \in \mathbb{Z}_n^{\times}$ is a primitive root iff it order is $\varphi(n)$ (equivalently, if a generates all of \mathbb{Z}_n^{\times}). Since $\varphi(10) = 4$, we see by part (c) that 3 and 7 are both primitive roots of \mathbb{Z}_{10}^{\times} , while 1 and 9 are not.

(4) (10 points) Prove that there exists a prime between n and n^2 for all sufficiently large n. (You may use, without proof, any theorems proved in class.)

By Chebyshev's theorem, there exist positive constants a and b such that

$$\frac{ax}{\log x} \le \pi(x) \le \frac{bx}{\log x}$$

for all sufficiently large x. Thus, for all sufficiently large n, the number of primes between n and n^2 is

$$\begin{split} \pi(n^2) - \pi(n) &\geq \frac{an^2}{\log(n^2)} - \frac{bn}{\log n} \\ &= \frac{an^2 - 2bn}{2\log n} \\ &\geq \frac{an - 2b}{2} \qquad \text{since } \log n \leq n \text{ for all } n \geq 1 \\ &\geq 1 \end{split}$$

so long as $n \ge \frac{2b+2}{a}$.

[To see that $\log x \le x$ for all $x \ge 1$, observe that

$$\log x = \int_1^x \frac{dt}{t} \le \int_1^x dt = x - 1 \le x$$

for all $x \ge 1$.

We conclude that for all sufficiently large n, there is at least one prime between n and n^2 .

(5) (30 points) State and prove the Law of Quadratic Reciprocity.

See lecture summaries.

(6) (30 points) Prove that \mathbb{Z}_p^{\times} has a primitive root for all primes p.

See lecture summaries.