
LECTURE 7: SUMMARY

We started by recalling the notation ordp(n), where p is prime and n ∈ N. We defined it to be the
largest integer k such that pk | n. In other words, ordp(n) is the unique integer satisfying

pordp(n) | n and pordp(n)+1 - n.

We also noted that this gives an upper bound on ordp(n): we have

pordp(n) | n =⇒ pordp(n) ≤ n

whence ordp(n) ≤ logn
log p

. (As will always be the case in this course, log x denotes the natural
logarithm of x.)

Next, we reconsidered Euclid’s proof of the infinitude of primes. What does it tell us about the
number of primes below x? For convenience, we gave this quantity a name:

π(x) := {p ≤ x : p is prime}.

Note that this function is well-defined even when x is not an integer. For example, π(4.7) = 2,
since there are precisely two primes below 4.7 (namely, 2 and 3).

For the time being, let p1, p2, p3, . . . denote the sequence of all primes in increasing order (e.g.
p1 = 2, p2 = 3, etc). From Euclid’s proof, we know that there exists a prime p | (p1p2 · · · pn−1+1),
and that this prime isn’t p1, p2, ..., or pn−1. It follows that pn ≤ p (since pn is the smallest prime
which is different from p1, . . . , pn−1). And p ≤ p1p2 · · · pn−1 + 1. Thus, we conclude that

pn ≤ p1p2 · · · pn−1 + 1.

This is a pretty terrible bound, as a few examples demonstrate. Nonetheless, it’s good enough to
prove something about the growth of primes. First, we have the following result.

Theorem 1. Let pn denote the nth largest prime, where p1 = 2. Then

pn ≤ 22
n−1 ∀n ∈ N.

Proof. We proceed by (strong) induction. The theorem clearly holds for n = 1, which will serve
as our base case. Next, suppose the bound holds for p1, p2, . . . , pn−1. Then

pn ≤ p1p2 · · · pn−1 + 1

≤ 22
0+21+···+2n−2

+ 1

= 22
n−1−1 + 1

≤ 22
n−1

. �

Corollary 2. π(x) ≥ log log x for all x ≥ 2.
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Proof. Given x ≥ 2, there exists n ∈ N such that pn ≤ x < pn+1. It follows that π(x) = n. By the
preceding theorem, we have

x < pn+1 ≤ 22
n

= 22
π(x)

.

Taking logs twice and simplifying gives

π(x) >
log log x− log log 2

log 2
.

Note that log 2 < 1, whence log log 2 < 0. It follows immediately from above that

π(x) > log log x

as claimed. �

One immediate question is: why the lower bound log log x when we’ve actually proved something
stronger? Well, first of all, both this and the sharper lower bound we discovered during the course
of the proof ( log log x−log log 2

log 2
) are extremely weak, so quibbling about which one to use is irrelevant.

Moreover, log log x is more aesthetically pleasing.

The point of the above corollary is to quantify Euclid’s theorem; now we know not only that there
are infinitely many primes, but also something about how they’re distributed. However, much more
is known. When he was a teenager, Gauss conjectured that

π(x) ∼ x

log x
.

Here the notation ∼ (read: ‘is asymptotic to’) has a precise meaning:

f(x) ∼ g(x)⇐⇒ lim
x→∞

f(x)

g(x)
= 1.

Another way to think about this:

f(x) ∼ g(x)⇐⇒ f(x) = g(x) + Err(x), where lim
x→∞

Err(x)

g(x)
= 0.

Later on, Gauss made a more precise conjecture:1

π(x) ∼
∫ x

2

dt

log t
.

This relation has played a key role in number theoretic investigations ever since. One milestone
occurred a century after Gauss’ original conjecture, when Hadamard and de la Vallée Poussin
(independently) verified its validity:

Theorem 3 (Prime Number Theorem). π(x) ∼
∫ x

2

dt

log t
.

To do this, they completed an outline set down by Riemann four decades earlier. This paper,
Riemann’s only one on number theory, contained a number of conjectures. All of these have been
proved but one: this is the notorious Riemann Hypothesis, which is a more precise version of the
Prime Number Theorem:

1Since
∫ x

2
dt

log t ∼
x

log x , it is not immediately clear why one conjecture is more precise than the other. The difference
lies in the error term, which is much smaller in Gauss’ second approximation than in the first.



Conjecture 4 (Riemann Hypothesis). For every ε > 0, there exists a positive constant Cε such that∣∣∣∣π(x)− ∫ x

2

dt

log t

∣∣∣∣ < Cε x
1/2+ε

for all x ≥ 2.

This is widely considered the most outstanding problem in all of mathematics today. Its resolution
would have enormous consequences. Unfortunately, any such result is quite far from being known.
In fact, it is not currently known whether there exists any α < 1 such that∣∣∣∣π(x)− ∫ x

2

dt

log t

∣∣∣∣ < xα.

We will return to this subject next lecture.

We finished the lecture with a different approach to proving the infinitude of primes. The approach
begins with the observation that starting with a few primes and multiplying them together in all
possible ways generates very few integers, even if we allow reusing each prime an arbitrary number
of times. We first treat an easy case of this. Suppose we have two primes p1 and p2. (This notation
no longer indicates that these are the smallest two primes; the pi are simply arbitrary primes.) Fix
a huge number x. How many natural numbers smaller than x are generated by the pi’s? In other
words, how many numbers up to x are of the form pa1p

b
2? We have the following calculation:∣∣∣{(a, b) ∈ Z2 : a, b ≥ 0 and pa1p

b
2 ≤ x

}∣∣∣ =∑
a≥0

∑
b≥0

pa1p
b
2≤x

1 ≤
∑
a≥0
pa1≤x

∑
b≥0
pb2≤x

1

=

(∑
a≥0
pa1≤x

1

)(∑
b≥0
pb2≤x

1

)

≤
(

log x

log p1
+ 1

)(
log x

log p2
+ 1

)
Since p1 ≥ 2 and p2 ≥ 3, we conclude that∣∣∣{(a, b) ∈ Z2 : a, b ≥ 0 and pa1p

b
2 ≤ x

}∣∣∣ ≤ ( log x

log 2
+ 1

)(
log x

log 3
+ 1

)
≤ (2 log x)(log x) for all sufficiently large x

= 2(log x)2.

This is a very small proportion of the number less the x: it is a calculus exercise to prove that
2(log x)2

x
→ 0 as x → ∞, so we might even say that 0% of all integers are generated by any two

fixed primes.

With a bit more notation, one can generalize the above procedure to prove the following:

Theorem 5. Any finite set of primes generates 0% of all integers. More precisely, for all sufficiently
large x, the set of primes {p1, p2, . . . , pk} generate at most 2(log x)k of the natural numbers n ≤ x.



It follows that there must be infinitely many primes; the Fundamental Theorem of Arithmetic
guarantees that the set of all primes generates every integer, and the above theorem shows that any
finite set of primes generates very few integers.


