
LECTURE 9: SUMMARY

Last time we proved the relation

π(2n)− π(n) < 2n log 2

log n
. (*)

The first half of today’s lecture was devoted to deducing from this a more explicit result:

Theorem 1. For all sufficiently large integers n, we have

π(n) ≤ 2n

log n
.

Note that you will figure out the precise meaning of ‘sufficiently large’ in your next problem set.

Proof sketch. We proceed by induction. Assume n is large, and suppose that the theorem has been
proved for all (sufficiently large) k < n. Our aim is to show that the claimed bound also holds for
n. There are two cases.

• n is even.
By (*) and induction, we have

π(n) < π(n/2) +
n log 2

log n
2

≤ n

log n
2

+
n log 2

log n
2

=
(1 + log 2)n

log n
2

It is an exercise to show that
(1 + log 2)n

log n
2

≤ 2n

log n

for all sufficiently large n. This concludes the proof for large, even n.
• n is odd.

First, observe that π(n) ≤ π(n− 1) + 1. It follows, by induction and (*), that
π(n) ≤ π(n− 1) + 1

< π
(n− 1

2

)
+

(n− 1) log 2

log n−1
2

+ 1

≤ n− 1

log n−1
2

+
(n− 1) log 2

log n−1
2

+ 1.

As before, it is an exercise to prove that this is bounded above by 2n
logn

. �

Date: February 5th, 2013.



Aside from the constant 2, this upper bound cannot be improved:

Theorem 2. For all sufficiently large n we have

π(n) ≥ log 2

2
· n

log n
.

Proof (due to M. Nair, 1982). Let

In :=

∫ 1

0

xn(1− x)n dx.

Note that In is positive. Expanding the integrand by the binomial theorem, exchanging the order
of integration and summation, and simplifying, yields an expression of the form

In =
a1

n+ 1
+

a2
n+ 2

+ · · ·+ an+1

2n+ 1

where ai ∈ Z for all i. It follows that In · [n + 1, n + 2, . . . , 2n + 1] is a positive integer. (Here
[n1, n2, . . .] denotes the least common multiple of the ni.) In particular, we deduce that

In · [n+ 1, n+ 2, . . . , 2n+ 1] ≥ 1.

Since In ≤ 1
4n

(as you will prove on your assignment), it follows that

[n+ 1, n+ 2, . . . , 2n+ 1] ≥ 4n. (†)

By the Fundamental Theorem of Arithmetic, we can write

[n+ 1, n+ 2, . . . , 2n+ 1] =
∏
p

pap

where the product runs over all primes p (and the ap are uniquely determined non-negative inte-
gers). From the definition of the LCM, there must exist some k ∈ {n+1, n+2, . . . , 2n+1} such
that pap | k; it follows that pap ≤ k ≤ 2n + 1 for all p. Moreover, it is clear that ap = 0 for all
p > 2n+ 1. Thus, we have

[n+ 1, n+ 2, . . . , 2n+ 1] =
∏
p

pap ≤
∏

p≤2n+1

(2n+ 1) = (2n+ 1)π(2n+1).

Combining this with (†) yields
(2n+ 1)π(2n+1) ≥ 4n.

Taking logs and simplifying gives

π(2n+ 1) ≥ 2n log 2

log(2n+ 1)
.

The latter quantity is always larger than the lower bound claimed in the theorem, so it suffices to
prove the claim for even inputs. But in this case,

π(2n) ≥ π(2n+ 1)− 1 ≥ 2n log 2

log(2n+ 1)
− 1

which can be shown to exceed the claimed bound for all sufficiently large n. �



Combining our two theorems, we conclude that there exist positive constants a, b such that
an

log n
< π(n) <

bn

log n

for all n ≥ 2.


