LECTURE 9: SUMMARY

Last time we proved the relation
2nlog 2

m(2n) —7(n) < (*)

The first half of today’s lecture was devoted to deducing from this a more explicit result:

logn

Theorem 1. For all sufficiently large integers n, we have

2n
m(n) < :
logn

Note that you will figure out the precise meaning of ‘sufficiently large’ in your next problem set.

Proof sketch. We proceed by induction. Assume n is large, and suppose that the theorem has been
proved for all (sufficiently large) £ < n. Our aim is to show that the claimed bound also holds for
n. There are two cases.

e 1 is even.
By (*) and induction, we have
nlog2

m(n) < m(n/2)+ log 2
o n n nlog2
~ log g log §
~ (1+1log2)n
N log 5

It is an exercise to show that
(1+log2)n < 2n
log 5 ~ logn

for all sufficiently large n. This concludes the proof for large, even n.
e 7 1s odd.
First, observe that 7(n) < m(n — 1) + 1. It follows, by induction and (¥), that

) <
m(n) <m(n—1)+
-1 —1)log2
( ) (n—1)lg2
2 IOgnT
< -1 (n—l)lcl)g2
_10g7 log %5~

+ 1

As before, it is an exercise to prove that this is bounded above by 102gn'
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Aside from the constant 2, this upper bound cannot be improved:

Theorem 2. For all sufficiently large n we have

S log2 n

w(n) >

2 logn’
Proof (due to M. Nair, 1982). Let

1
I, = / 2" (1 —z)" du.
0

Note that 7, is positive. Expanding the integrand by the binomial theorem, exchanging the order
of integration and summation, and simplifying, yields an expression of the form

ay a2 QAn1
I, = el
n—|—1+n—|—2+ +2n+1
where a; € Z for all i. It follows that [,, - [n + 1,n + 2,...,2n + 1] is a positive integer. (Here
[n1, ng, . ..] denotes the least common multiple of the n;.) In particular, we deduce that

Io-in+1,n+2....2n+1] > 1.
Since [,, < ﬁ (as you will prove on your assignment), it follows that
m+1,n+2,....2n+ 1] > 4™ M
By the Fundamental Theorem of Arithmetic, we can write

[n+1,n+2,...,2n+1]:Hp“p
)

where the product runs over all primes p (and the a, are uniquely determined non-negative inte-
gers). From the definition of the LCM, there must exist some k € {n+ 1,n+2,...,2n+ 1} such
that p® | k; it follows that p» < k < 2n + 1 for all p. Moreover, it is clear that a, = 0 for all
p > 2n + 1. Thus, we have

n+Ln+2,.. 2041 =]]p"< [] @n+1)=@n+1)".
P p<2n+1
Combining this with (7) yields
(2n + 1)7r(2n+1) Z 4"
Taking logs and simplifying gives
2nlog 2
log(2n + 1)

The latter quantity is always larger than the lower bound claimed in the theorem, so it suffices to
prove the claim for even inputs. But in this case,

2nlog 2
2n) > (2 N—1>——>——1
m(2n) 2 7 (2n + 1) ~ log(2n+ 1)

which can be shown to exceed the claimed bound for all sufficiently large n. U



Combining our two theorems, we conclude that there exist positive constants a, b such that

an bn
<m(n) <
logn logn

foralln > 2.



