
LECTURE 13: SUMMARY

Recall that we’ve been been exploring arithmetic on the set

Zd := {0, 1, 2, . . . , d− 1}.

We have notions of addition and multiplication on this set. Subtraction is just addition in disguise,
so we have that too. Division, however, poses a problem. Certainly, you can’t divide by 0 (for
the same reasons as in Z), but sometimes there are other elements you can’t divide by, either. To
illustrate this, consider the multiplication table for Z8:

× 1 2 3 4 5 6 7
1 1 2 3 4 5 6 7
2 2 4 6 0 2 4 6
3 3 6 1 4 7 2 5
4 4 0 4 0 4 0 4
5 5 2 7 4 1 6 3
6 6 4 2 0 6 4 2
7 7 6 5 4 3 2 1

It’s clear that no multiple of 4 is ever equal to 3; in other words, 3 ÷ 4 has no answer. This might
not seem so problematic, since 3 isn’t divisible by 4 in Z, either. More troubling is that 4 ÷ 2 has
two possible answers: 2 and 6. In this lecture, we discuss one approach to resolving this: removing
all elements which are noninvertible. This will let us do division, but at a cost, as we shall see.

Last time, we saw that nZd = Zd iff n is invertible in Zd. To avoid writing the word “invertible”
over and over, we define

Z×d := {n ∈ Zd : n is invertible in Zd}.

From our work last time, we see that

Z×d = {n ≤ d− 1 : (n, d) = 1}.

Thus, for example, Z×8 = {1, 3, 5, 7}. To gain some intuition, we explored this simple case by
looking at the multiplication table for Z×8 :

× 1 3 5 7
1 1 3 5 7
3 3 1 7 5
5 5 7 1 3
7 7 5 3 1
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One fact which jumps out is that Z×8 is closed under multiplication, i.e. for any a, b ∈ Z×8 , the
product ab ∈ Z×8 as well. We quickly prove this in general:

Proposition 1. Z×d is closed under multiplication (i.e. if a, b ∈ Z×d , then ab ∈ Z×d ).

Remark. We know that Zd is closed under multiplication, so the product of two invertible elements
lives in Zd. What’s not obvious is whether this product is itself invertible! Hence, the proposition.

Proof. Recall that for x ∈ Zd to be invertible means that it has an inverse in Zd; in other words, we
do not require the inverse to be in Z×d .

Suppose a, b ∈ Z×d ; then they have inverses a−1, b−1 ∈ Zd, respectively. It’s easy to verify that
a−1b−1 is an inverse of ab, thus proving that ab is invertible. �

So, Z×d has a natural notion of multiplication. The raison d’être of Z×d is that it also has division.
For example, going back to the multiplication table for Z×8 , we see that 3÷ 5 = 7 (in other words,
5x = 3 in Z×8 holds for x = 7 and nothing else). To get more intuition, we found 2/5 in Z×9 . There
were three strategies people took to do this:

Strategy 1. Write out the multiplication table for Z×9 , and search the 5th row for the entry 2. It turns out
2 is in the 4th column of the 5th row; in other words, 4× 5 = 2, or equivalently, 2/5 = 4.

Strategy 2. Starting with 2, add 9 to it as many times as necessary until we get to an integer multiple
of 5. In this case, we have 2 + 9 + 9 = 20. Thus, 2/5 = 20/5 = 4.

Strategy 3. Find 5−1; this is easily seen to be 2. It follows that 2/5 = 2× 5−1 = 4.

Armed with this intuition, we next proved that division is a well-defined operation in Z×d .

Proposition 2. Given a, b ∈ Z×d , there exists a unique x ∈ Z×d such that bx = a. In other words,
a÷ b exists, and is uniquely defined.

Proof. First we prove that inverses are well-defined. More precisely, suppose b ∈ Z×d . By defini-
tion, b has an inverse b−1 ∈ Zd, and it’s easy to see that b−1 ∈ Z×d : the inverse of b−1 is b itself. To
show that the inverse is well-defined, it remains to show that it’s unique. We gave a slick proof of
this: if x and y are both inverses of b, then

x = xby = y.

Thus, for any b ∈ Z×d , it makes sense to talk about the inverse b−1.

So, what is a ÷ b? In other words, is it true that there exists a unique x ∈ Z×d such that bx = a?
It’s clear that a solution to this equation exists, namely, x = ab−1. Moreover, if y ∈ Z×d satisfies
by = a, then we have y = b−1by = b−1a, which proves uniqueness. �

Thus, by passing from Zd to Z×d , we have added division to our arithmetic. In the process, however,
we have lost something: Z×d is no longer closed under addition! To sum up, if we work in Zd, we
can add and multiply, but not divide; if we work in Z×d we can multiply and divide, but not add. As
we shall see in the near future, there is a middle ground – a set in which both addition and division
work, and which (therefore) has a very rich arithmetic structure. These are called finite fields, and
play an important role in many areas of mathematics.



We finished lecture by returning to Z×8 and making another observation about its multiplication
table. The 3 row of the table reads 3, 1, 7, 5; these are simply 3 × 1, 3 × 3, 3 × 5, and 3 × 7. We
therefore have

1× 3× 5× 7 = 3× 1× 7× 5

= (3× 1)× (3× 3)× (3× 5)× (3× 7)

= 34 × (1× 3× 5× 7)

Dividing both sides by 1×3×5×7, we deduce that 34 = 1. Of course, this is sort of silly; directly
from the multiplication table we see that 32 = 1, so of course we must have 34 = 1 in Z×8 . But the
idea above generalizes quite nicely. Given a set A, denote the number of elements in A by |A|.

Theorem 3 (Euler’s theorem). For all a ∈ Z×d , we have a|Z
×
d | = 1.

Proof. We follow the same procedure as for Z×8 above. Pick a ∈ Z×d , and observe that aZ×d = Z×d .
(Why?) It follows that multiplying all of the elements of Z×d together gives the same answer as
multiplying all the elements of aZ×d together. Note that if k ∈ aZ×d , then k = am for some
m ∈ Z×d . We deduce that ∏
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Dividing both sides by
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 yields the theorem. �

For convenience, we introduce the following notation:

ϕ(d) := |Z×d |.
Thus, Euler’s theorem reads: aϕ(d) = 1 for all a ∈ Z×d . Can we write ϕ(d) in a more explicit way?
For example, is there a fast way to calculate ϕ(1000000)? It’s not immediately clear. However, we
did observe one case in which it’s easy: if p is prime, then ϕ(p) = p− 1. Applying this in Euler’s
theorem above, we deduce the following result:

Theorem 4 (Fermat’s Little Theorem). Let p be a prime. For all a ∈ Z×p , we have ap−1 = 1.


